High resolution printing processes with high throughput, enhanced step coverage, and high design flexibility

Y. Kusaka, H. Ushijima
{"title":"High resolution printing processes with high throughput, enhanced step coverage, and high design flexibility","authors":"Y. Kusaka, H. Ushijima","doi":"10.1109/ICEP.2016.7486794","DOIUrl":null,"url":null,"abstract":"Reverse offset printing and microcontact printing are fascinating methods for fabricating fine patterns because both of them can attain a 1-μm/1-μm line-and-space resolution, and the resulting patterns manifest uniform layer-thicknesses irrespective of the pattern sizes. However, the printed pattern has very sharp edges; therefore, the step-coverage of subsequent overlying layers has often been a severe problem. Further, as reverse offset printing and microcontact printing use an engraved glass and a stamp, respectively, the pattern design is restricted because of bottom-contact-type defects. Thermal sintering of the printed patterns also leads to a longer processing time. To address these problems, we have developed several complementary processes. In this presentation, wet-on-wet, electrode-embedding, and push-pull processes and a newly developed high-resolution planographic method called adhesion contrast planography are discussed.","PeriodicalId":343912,"journal":{"name":"2016 International Conference on Electronics Packaging (ICEP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEP.2016.7486794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse offset printing and microcontact printing are fascinating methods for fabricating fine patterns because both of them can attain a 1-μm/1-μm line-and-space resolution, and the resulting patterns manifest uniform layer-thicknesses irrespective of the pattern sizes. However, the printed pattern has very sharp edges; therefore, the step-coverage of subsequent overlying layers has often been a severe problem. Further, as reverse offset printing and microcontact printing use an engraved glass and a stamp, respectively, the pattern design is restricted because of bottom-contact-type defects. Thermal sintering of the printed patterns also leads to a longer processing time. To address these problems, we have developed several complementary processes. In this presentation, wet-on-wet, electrode-embedding, and push-pull processes and a newly developed high-resolution planographic method called adhesion contrast planography are discussed.
高分辨率印刷工艺,具有高吞吐量,增强步骤覆盖和高设计灵活性
反向胶印和微接触印刷是制作精细图案的重要方法,因为它们都可以达到1-μm/1-μm的线间距分辨率,并且所得到的图案无论图案尺寸大小都具有均匀的层厚度。然而,印刷的图案有非常锋利的边缘;因此,后续上覆层的步复常常是一个严重的问题。此外,由于反向胶印和微接触印刷分别使用雕刻玻璃和印章,由于底部接触型缺陷,图案设计受到限制。印刷图案的热烧结也导致较长的处理时间。为了解决这些问题,我们制定了几个互补的进程。在这篇演讲中,我们讨论了湿对湿、电极嵌入和推拉工艺以及一种新开发的高分辨率平面成像方法,即粘附对比平面成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信