A neural network approach to smooth calibrated data corrupted from switching errors

A. Z. Landa, M. Pulido-Gaytán, J. Reynoso‐Hernández, P. Roblin, J. R. Loo-Yau
{"title":"A neural network approach to smooth calibrated data corrupted from switching errors","authors":"A. Z. Landa, M. Pulido-Gaytán, J. Reynoso‐Hernández, P. Roblin, J. R. Loo-Yau","doi":"10.1109/ARFTG.2012.6422428","DOIUrl":null,"url":null,"abstract":"A reliable calibration of the vector network analyzer is needed in order to characterize microwave devices. For some VNAs, such as HP8510, solving the 8 error model is not enough to accurately compute the device under test (DUT) S-parameters, but also, a correction of the switching errors inherent to the measurement must be performed. In this paper, a neural network is used to find the S-parameters of the DUT free from switching errors instead of calculating the well-known equations used for that matter.","PeriodicalId":262198,"journal":{"name":"80th ARFTG Microwave Measurement Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th ARFTG Microwave Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2012.6422428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A reliable calibration of the vector network analyzer is needed in order to characterize microwave devices. For some VNAs, such as HP8510, solving the 8 error model is not enough to accurately compute the device under test (DUT) S-parameters, but also, a correction of the switching errors inherent to the measurement must be performed. In this paper, a neural network is used to find the S-parameters of the DUT free from switching errors instead of calculating the well-known equations used for that matter.
一种神经网络方法来平滑因切换错误而损坏的校准数据
为了对微波器件进行表征,需要对矢量网络分析仪进行可靠的标定。对于一些vna,如HP8510,求解8误差模型不足以准确计算被测器件(DUT) s参数,而且还必须执行测量固有的开关误差校正。在本文中,使用神经网络来寻找无开关误差的被测设备的s参数,而不是计算用于该问题的众所周知的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信