High-frequency analog GNR-FET design criteria

I. Imperiale, A. Gnudi, E. Gnani, S. Reggiani, G. Baccarani
{"title":"High-frequency analog GNR-FET design criteria","authors":"I. Imperiale, A. Gnudi, E. Gnani, S. Reggiani, G. Baccarani","doi":"10.1109/ESSDERC.2011.6044174","DOIUrl":null,"url":null,"abstract":"Some key aspects of the behavior of graphene nanoribbon (GNR) FETs for high-frequency analog applications are identified and discussed by means of a simulation study based on a full-quantum ballistic transport model. GNRs of width in the order of 10 nm are considered, where the small band-gap and the consequent leakage currents due to band-to-band-tunneling (BTBT) require a careful design. Simulations performed with a realistic model for source/drain metal contacts indicate that a proper choice of the drain doping profile can partially suppress BTBT currents. A 40-nm gate-length 2-nm SiO2 gate-dielectric GNR-FET can achieve a peak small-signal voltage gain of about 30 and a cut-off frequency well above 1 THz.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"45 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Some key aspects of the behavior of graphene nanoribbon (GNR) FETs for high-frequency analog applications are identified and discussed by means of a simulation study based on a full-quantum ballistic transport model. GNRs of width in the order of 10 nm are considered, where the small band-gap and the consequent leakage currents due to band-to-band-tunneling (BTBT) require a careful design. Simulations performed with a realistic model for source/drain metal contacts indicate that a proper choice of the drain doping profile can partially suppress BTBT currents. A 40-nm gate-length 2-nm SiO2 gate-dielectric GNR-FET can achieve a peak small-signal voltage gain of about 30 and a cut-off frequency well above 1 THz.
高频模拟GNR-FET设计准则
通过基于全量子弹道输运模型的仿真研究,确定并讨论了用于高频模拟应用的石墨烯纳米带场效应管(GNR)行为的一些关键方面。考虑宽度为10 nm的gnr,其中小带隙和由此引起的带间隧道(BTBT)泄漏电流需要仔细设计。用一个真实的源极/漏极金属触点模型进行的模拟表明,适当选择漏极掺杂谱可以部分抑制BTBT电流。一个40 nm门长2 nm SiO2门介电态GNR-FET可以实现约30的峰值小信号电压增益和远高于1太赫兹的截止频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信