{"title":"Low temperature direct bonding of PEEK and Pt through VUV/FAB surface treatments","authors":"Weixin Fu, A. Shigetou, S. Shoji, J. Mizuno","doi":"10.1109/ICEP.2016.7486834","DOIUrl":null,"url":null,"abstract":"A direct hybrid bonding of PEEK-Pt is feasible at low temperature of 150 °C through surface treatment technologies of vacuum ultraviolet (VUV) and fast atom bombardment (FAB). The X-ray photoelectron spectroscopy showed the VUV treatment was capable of creating hydrate bridge layers on both PEEK and Pt surfaces, which were considered to form a robust bond through dehydration reactions. Shear strength test showed that the VUV-treated samples were stronger than the FAB-treated ones, and the highest strength reached 0.91 MPa, which was comparable with conventional PEEK-based direct bondings. This technology is expected to be applied in future body implantable medical micro electromechanical system devices.","PeriodicalId":343912,"journal":{"name":"2016 International Conference on Electronics Packaging (ICEP)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEP.2016.7486834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A direct hybrid bonding of PEEK-Pt is feasible at low temperature of 150 °C through surface treatment technologies of vacuum ultraviolet (VUV) and fast atom bombardment (FAB). The X-ray photoelectron spectroscopy showed the VUV treatment was capable of creating hydrate bridge layers on both PEEK and Pt surfaces, which were considered to form a robust bond through dehydration reactions. Shear strength test showed that the VUV-treated samples were stronger than the FAB-treated ones, and the highest strength reached 0.91 MPa, which was comparable with conventional PEEK-based direct bondings. This technology is expected to be applied in future body implantable medical micro electromechanical system devices.