On-line learning of a feedback controller for quasi-passive-dynamic walking by a stochastic policy gradient method

K. Hitomi, T. Shibata, Yutaka Nakamura, S. Ishii
{"title":"On-line learning of a feedback controller for quasi-passive-dynamic walking by a stochastic policy gradient method","authors":"K. Hitomi, T. Shibata, Yutaka Nakamura, S. Ishii","doi":"10.1109/IROS.2005.1545258","DOIUrl":null,"url":null,"abstract":"A class of biped locomotion called passive dynamic walking (PDW) has been recognized to be efficient in energy consumption and a key to understand human walking. Although PDW is sensitive to the initial condition and disturbances, some studies of quasi-PDW, which introduces supplementary actuators, are reported to overcome the sensitivity. In this article, for realization of the quasi-PDW, an on-line learning scheme of a feedback controller based on a policy gradient reinforcement learning method is proposed. Computer simulations show that the parameter in a quasi-PDW controller is automatically tuned by our method utilizing the passivity of the robot dynamics. The obtained controller is robust against variations in the slope gradient to some extent.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2005.1545258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A class of biped locomotion called passive dynamic walking (PDW) has been recognized to be efficient in energy consumption and a key to understand human walking. Although PDW is sensitive to the initial condition and disturbances, some studies of quasi-PDW, which introduces supplementary actuators, are reported to overcome the sensitivity. In this article, for realization of the quasi-PDW, an on-line learning scheme of a feedback controller based on a policy gradient reinforcement learning method is proposed. Computer simulations show that the parameter in a quasi-PDW controller is automatically tuned by our method utilizing the passivity of the robot dynamics. The obtained controller is robust against variations in the slope gradient to some extent.
基于随机策略梯度法的准被动动态步行反馈控制器在线学习
被动动态步行(passive dynamic walking, PDW)是一种高效的两足运动,是理解人类步行的关键。虽然PDW对初始条件和扰动敏感,但一些引入辅助作动器的准PDW研究克服了这种敏感性。为了实现准pdw,本文提出了一种基于策略梯度强化学习方法的反馈控制器在线学习方案。计算机仿真表明,该方法利用机器人动力学的无源性,实现了准pdw控制器参数的自动整定。所得到的控制器对坡度的变化具有一定的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信