Novel RRAM-enabled 1T1R synapse capable of low-power STDP via burst-mode communication and real-time unsupervised machine learning

S. Ambrogio, S. Balatti, V. Milo, R. Carboni, Z. Wang, A. Calderoni, N. Ramaswamy, D. Ielmini
{"title":"Novel RRAM-enabled 1T1R synapse capable of low-power STDP via burst-mode communication and real-time unsupervised machine learning","authors":"S. Ambrogio, S. Balatti, V. Milo, R. Carboni, Z. Wang, A. Calderoni, N. Ramaswamy, D. Ielmini","doi":"10.1109/VLSIT.2016.7573432","DOIUrl":null,"url":null,"abstract":"We present a new electronic synapse for neuromorphic computing consisting of a 1T1R structure based on HfO2 RRAM technology, and capable of STDP and pattern learning. Power consumption is reduced by adopting short POST spike and burst-mode integration. MNIST classification shows promising learning and classification efficiency. These results support RRAM as an enabling technology for low-power neuromorphic hardware.","PeriodicalId":129300,"journal":{"name":"2016 IEEE Symposium on VLSI Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2016.7573432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We present a new electronic synapse for neuromorphic computing consisting of a 1T1R structure based on HfO2 RRAM technology, and capable of STDP and pattern learning. Power consumption is reduced by adopting short POST spike and burst-mode integration. MNIST classification shows promising learning and classification efficiency. These results support RRAM as an enabling technology for low-power neuromorphic hardware.
通过突发模式通信和实时无监督机器学习实现低功耗STDP的新型rram启用1T1R突触
我们提出了一种新的用于神经形态计算的电子突触,它由基于HfO2 RRAM技术的1T1R结构组成,具有STDP和模式学习能力。采用短脉冲尖峰和突发模式集成,降低了功耗。MNIST分类显示出良好的学习效率和分类效率。这些结果支持RRAM作为低功耗神经形态硬件的使能技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信