Muscle-actuated bio-hybrid mems by cell culture and differentiation on me tamaterial micro-scaffolds

M. Gullo, S. Takeuchi, O. Paul
{"title":"Muscle-actuated bio-hybrid mems by cell culture and differentiation on me tamaterial micro-scaffolds","authors":"M. Gullo, S. Takeuchi, O. Paul","doi":"10.1109/MEMSYS.2016.7421729","DOIUrl":null,"url":null,"abstract":"This paper reports on a 3D bio-hybrid metamaterial MEMS scaffold for the culture and differentiation of C2C12 muscle precursor cells. For the first time, preferential cells differentiation on a technical surface into functional myotubes is demonstrated. The micro-scaffolds are based on concatenated bowtie elements fabricated by two-photon lithography and designed to achieve an equivalent Young's modulus of 12kPa. The high flexibility promotes the differentiation of the muscle cells into contractile myotubes [1]. Compared to state-of-the-art gel-based cell culture substrates, mechanical metamaterials can be shaped into arbitrary complex 3D geometries opening pathways towards muscle-driven biohybrid MEMS.","PeriodicalId":157312,"journal":{"name":"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2016.7421729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports on a 3D bio-hybrid metamaterial MEMS scaffold for the culture and differentiation of C2C12 muscle precursor cells. For the first time, preferential cells differentiation on a technical surface into functional myotubes is demonstrated. The micro-scaffolds are based on concatenated bowtie elements fabricated by two-photon lithography and designed to achieve an equivalent Young's modulus of 12kPa. The high flexibility promotes the differentiation of the muscle cells into contractile myotubes [1]. Compared to state-of-the-art gel-based cell culture substrates, mechanical metamaterials can be shaped into arbitrary complex 3D geometries opening pathways towards muscle-driven biohybrid MEMS.
肌肉驱动的生物杂交mems的细胞培养和在材料微支架上分化
本文报道了一种用于C2C12肌肉前体细胞培养和分化的三维生物杂交超材料MEMS支架。首次证明了技术表面上细胞向功能性肌管的优先分化。该微支架基于双光子光刻技术制造的串联领结元件,其等效杨氏模量为12kPa。高柔韧性促进肌肉细胞分化为可收缩的肌管[1]。与最先进的凝胶细胞培养基质相比,机械超材料可以塑造成任意复杂的3D几何形状,为肌肉驱动的生物混合MEMS开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信