{"title":"System-level reliability using component-level failure signatures","authors":"R. Wong, B. Bhuva, A. Evans, S. Wen","doi":"10.1109/IRPS.2012.6241832","DOIUrl":null,"url":null,"abstract":"System-level Mean Time Between Failures (MTBF) is usually evaluated using individual component-level reliability metrics. System-level failures are categorized by Reliability, Availability and Serviceability (RAS) metrics. However, RAS evaluation at the system-level requires precise mapping between component failure modes, their system failure signatures and system reliability requirements. In this paper, RAS analysis carried out on internet switches in a top-down hierarchical fashion is presented. Results show availability of failure classification at a lower-level of design allows for better fault management and improved RAS metrics at the system-level. A hierarchical modeling format is proposed to standardize the reporting of component failure modes to improve the system level modeling of RAS.","PeriodicalId":341663,"journal":{"name":"2012 IEEE International Reliability Physics Symposium (IRPS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2012.6241832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
System-level Mean Time Between Failures (MTBF) is usually evaluated using individual component-level reliability metrics. System-level failures are categorized by Reliability, Availability and Serviceability (RAS) metrics. However, RAS evaluation at the system-level requires precise mapping between component failure modes, their system failure signatures and system reliability requirements. In this paper, RAS analysis carried out on internet switches in a top-down hierarchical fashion is presented. Results show availability of failure classification at a lower-level of design allows for better fault management and improved RAS metrics at the system-level. A hierarchical modeling format is proposed to standardize the reporting of component failure modes to improve the system level modeling of RAS.