{"title":"High transconductance, ft and fmax in In0.63Ga0.37As FinFETs using a novel fin formation technique","authors":"C. Zota, L. Wernersson, E. Lind","doi":"10.1109/ICIPRM.2014.6880567","DOIUrl":null,"url":null,"abstract":"We report on In<sub>0.63</sub>Ga<sub>0.37</sub>As FinFETs utilizing nanowires grown by selective-area growth as channel. These nanowires are defined by crystallographic planes rather than pattern transfer using etching. The fabricated devices exhibit maximum transconductance g<sub>m, max</sub> = 2.05 mS/um at V<sub>ds</sub> = 0.5 V, as well as record-high extrapolated f<sub>t</sub> = 300 GHz and f<sub>max</sub> = 342 GHz, on the non-planar III-V MOSFET platform.","PeriodicalId":181494,"journal":{"name":"26th International Conference on Indium Phosphide and Related Materials (IPRM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Indium Phosphide and Related Materials (IPRM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2014.6880567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report on In0.63Ga0.37As FinFETs utilizing nanowires grown by selective-area growth as channel. These nanowires are defined by crystallographic planes rather than pattern transfer using etching. The fabricated devices exhibit maximum transconductance gm, max = 2.05 mS/um at Vds = 0.5 V, as well as record-high extrapolated ft = 300 GHz and fmax = 342 GHz, on the non-planar III-V MOSFET platform.