Stefon E. Shelton, O. Rozen, A. Guedes, Richard J. Przybyla, B. Boser, D. Horsley
{"title":"Improved acoustic coupling of air-coupled micromachined ultrasonic transducers","authors":"Stefon E. Shelton, O. Rozen, A. Guedes, Richard J. Przybyla, B. Boser, D. Horsley","doi":"10.1109/MEMSYS.2014.6765750","DOIUrl":null,"url":null,"abstract":"Phased array imaging with micromachined ultrasound transducer (MUT) arrays is widely used in applications such as ranging, medical imaging, and gesture recognition. In a phased array, the maximum spacing between elements must be less than half of the wavelength to avoid large sidelobes. This places a limit on the maximum transducer size which is not attractive since the acoustic coupling drops rapidly for MUT diameters less than a wavelength. Here, we present a new approach to increase the acoustic coupling of small radius MUTs using an impedance matching resonant tube etched beneath the MUT. Impedance, laser Doppler vibrometer (LDV), and acoustic burst measurements confirm a 350% increase in SPL and 8x higher bandwidth compared to transducers without the impedance matching tube, enabling compact arrays with high fill-factor and efficiency.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Phased array imaging with micromachined ultrasound transducer (MUT) arrays is widely used in applications such as ranging, medical imaging, and gesture recognition. In a phased array, the maximum spacing between elements must be less than half of the wavelength to avoid large sidelobes. This places a limit on the maximum transducer size which is not attractive since the acoustic coupling drops rapidly for MUT diameters less than a wavelength. Here, we present a new approach to increase the acoustic coupling of small radius MUTs using an impedance matching resonant tube etched beneath the MUT. Impedance, laser Doppler vibrometer (LDV), and acoustic burst measurements confirm a 350% increase in SPL and 8x higher bandwidth compared to transducers without the impedance matching tube, enabling compact arrays with high fill-factor and efficiency.