Efficient time redundancy for error correcting inner-product units and convolvers

Y. Hsu, V. Piuri, E. Swartzlander
{"title":"Efficient time redundancy for error correcting inner-product units and convolvers","authors":"Y. Hsu, V. Piuri, E. Swartzlander","doi":"10.1109/DFTVS.1995.476953","DOIUrl":null,"url":null,"abstract":"Fault tolerance can be achieved by using time redundancy with modest hardware overhead at the expense of computation time. In this paper the REcomputing with Triplication With Voting (RETWV) technique is applied to complex arithmetic units, such as inner product units and convolvers for concurrent error correction. Hardware complexity, delay, and throughput of the RETWV concurrent error correcting inner product units are analyzed and compared. It is seen that RETWV designs can be faster than the conventional design. That is, in addition to their concurrent error correcting capability, the throughput of RETWV designs is higher than that of their nonredundant counterparts. This result is significant because this shows that the RETWV technique, which is a time redundancy approach, can be used in high performance systems.","PeriodicalId":362167,"journal":{"name":"Proceedings of International Workshop on Defect and Fault Tolerance in VLSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Workshop on Defect and Fault Tolerance in VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFTVS.1995.476953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Fault tolerance can be achieved by using time redundancy with modest hardware overhead at the expense of computation time. In this paper the REcomputing with Triplication With Voting (RETWV) technique is applied to complex arithmetic units, such as inner product units and convolvers for concurrent error correction. Hardware complexity, delay, and throughput of the RETWV concurrent error correcting inner product units are analyzed and compared. It is seen that RETWV designs can be faster than the conventional design. That is, in addition to their concurrent error correcting capability, the throughput of RETWV designs is higher than that of their nonredundant counterparts. This result is significant because this shows that the RETWV technique, which is a time redundancy approach, can be used in high performance systems.
有效的时间冗余纠错内积单元和卷积
容错可以通过使用时间冗余来实现,并且以计算时间为代价使用适度的硬件开销。本文将RETWV (RETWV)技术应用于复杂的算术单元,如内积单元和卷积,用于并发纠错。分析比较了RETWV并发纠错内积单元的硬件复杂度、时延和吞吐量。可以看出,RETWV设计可以比传统设计更快。也就是说,除了它们的并发纠错能力外,RETWV设计的吞吐量也高于它们的非冗余设计。这个结果很重要,因为这表明RETWV技术是一种时间冗余方法,可以用于高性能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信