A. Matsumoto, Y. Takei, A. Matsushita, K. Akahane, Y. Matsushima, K. Utaka
{"title":"Gain characteristics and femto-second optical pulse response of 1550nm-band QD-SOA for ultra-fast all-optical logic gate devices","authors":"A. Matsumoto, Y. Takei, A. Matsushita, K. Akahane, Y. Matsushima, K. Utaka","doi":"10.1109/ICIPRM.2014.6880561","DOIUrl":null,"url":null,"abstract":"We fabricated the QD-SOA, which was composed of 20-layer-stacked InAs quantum dots structure with the strain-compensation technique grown by MBE, and evaluated the fundamental gain characteristics and ultra-fast optical pulse response for all-optical logic gate devices at a wavelength range around 1550nm. For the device length of 1650 μm, the maximum gain of 34.7 dB was obtained for TE mode. And we also measured femto-second optical pulse response by auto-correlation waveforms to observe a slight pulse broadening of about 55 fs.","PeriodicalId":181494,"journal":{"name":"26th International Conference on Indium Phosphide and Related Materials (IPRM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Indium Phosphide and Related Materials (IPRM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2014.6880561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We fabricated the QD-SOA, which was composed of 20-layer-stacked InAs quantum dots structure with the strain-compensation technique grown by MBE, and evaluated the fundamental gain characteristics and ultra-fast optical pulse response for all-optical logic gate devices at a wavelength range around 1550nm. For the device length of 1650 μm, the maximum gain of 34.7 dB was obtained for TE mode. And we also measured femto-second optical pulse response by auto-correlation waveforms to observe a slight pulse broadening of about 55 fs.