{"title":"A New Robust Paradigm for Diagnosing Hold-Time Faults in Scan Chains","authors":"Chao-Wen Tzeng, Jeffrey Hsu, Shi-Yu Huang","doi":"10.1049/iet-cdt:20060205","DOIUrl":null,"url":null,"abstract":"Hold-time violation is a common cause of failure at scan chains. A robust new paradigm for diagnosing such failure is presented in this paper. As compared to previous methods, the major advantage of ours is the ability to tolerate non-ideal conditions, e.g., under the presence of certain core logic faults or for those faults that manifest themselves intermittently. We first formulate the diagnosis problem as a delay insertion process. Then, two algorithms including a greedy algorithm and a so-called best-alignment based algorithm are proposed. Experimental results on a number of real designs are presented to demonstrate its effectiveness","PeriodicalId":356198,"journal":{"name":"2006 International Symposium on VLSI Design, Automation and Test","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on VLSI Design, Automation and Test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cdt:20060205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Hold-time violation is a common cause of failure at scan chains. A robust new paradigm for diagnosing such failure is presented in this paper. As compared to previous methods, the major advantage of ours is the ability to tolerate non-ideal conditions, e.g., under the presence of certain core logic faults or for those faults that manifest themselves intermittently. We first formulate the diagnosis problem as a delay insertion process. Then, two algorithms including a greedy algorithm and a so-called best-alignment based algorithm are proposed. Experimental results on a number of real designs are presented to demonstrate its effectiveness