Electromigration failure mechanisms for different flip chip bump configurations

R. Labie, T. Webers, C. Winters, V. Cherman, K. Croes, B. Vandevelde, F. Dosseul
{"title":"Electromigration failure mechanisms for different flip chip bump configurations","authors":"R. Labie, T. Webers, C. Winters, V. Cherman, K. Croes, B. Vandevelde, F. Dosseul","doi":"10.1109/IRPS.2011.5784541","DOIUrl":null,"url":null,"abstract":"Different flip chip bump configurations are investigated in terms of their electromigration behavior. Standard SAC (SnAgCu) solder bumps with a Ni/Au finish on the chip side are compared with Cu pillar bumps soldered with a thin layer of SnAg alloy. The substrate finish is identical for both cases and consists of a 17µm thick Cu layer. Depending on the current direction, different interfaces are stressed what results in variable degradation mechanisms. Both the 17µm thick Cu UBM and the Cu pillar bumps outperform the Ni/Au chip finish due to the fast formation of an intermetallic phase which covers the full solder stand-off height. The excessive intermetallic growth indicates significant Cu dissolution but void formation couldn't be detected. When the electrons are forced from the Ni/Au finish to the solder bump, micro-structural degradation and an according bump resistance increase can be clearly monitored for different test conditions. The electromigration parameters of Black's acceleration model are defined for the Ni/Au UBM. A TaN temperature sensor is incorporated in the test chip which allows in-situ measurements of the actual device temperature. In this way, the generated Joule heating can be clearly monitored.","PeriodicalId":242672,"journal":{"name":"2011 International Reliability Physics Symposium","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2011.5784541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Different flip chip bump configurations are investigated in terms of their electromigration behavior. Standard SAC (SnAgCu) solder bumps with a Ni/Au finish on the chip side are compared with Cu pillar bumps soldered with a thin layer of SnAg alloy. The substrate finish is identical for both cases and consists of a 17µm thick Cu layer. Depending on the current direction, different interfaces are stressed what results in variable degradation mechanisms. Both the 17µm thick Cu UBM and the Cu pillar bumps outperform the Ni/Au chip finish due to the fast formation of an intermetallic phase which covers the full solder stand-off height. The excessive intermetallic growth indicates significant Cu dissolution but void formation couldn't be detected. When the electrons are forced from the Ni/Au finish to the solder bump, micro-structural degradation and an according bump resistance increase can be clearly monitored for different test conditions. The electromigration parameters of Black's acceleration model are defined for the Ni/Au UBM. A TaN temperature sensor is incorporated in the test chip which allows in-situ measurements of the actual device temperature. In this way, the generated Joule heating can be clearly monitored.
不同倒装芯片碰撞配置的电迁移失效机制
研究了不同的倒装芯片碰撞结构的电迁移行为。标准SAC (SnAgCu)焊料凸点与芯片侧Ni/Au涂层的铜柱凸点进行了比较,并焊接了一层薄薄的SnAg合金。两种情况下的基材表面是相同的,由17 μ m厚的铜层组成。根据当前的方向,不同的界面被强调导致不同的降解机制。17 μ m厚的Cu UBM和Cu柱凸起都优于Ni/Au芯片表面处理,因为金属间相的快速形成覆盖了整个焊料的高度。过量的金属间生长表明铜溶解明显,但未发现空洞形成。在不同的测试条件下,当电子从Ni/Au表面被强迫到焊料凸起处时,可以清楚地监测到微观结构的退化和相应的凸起阻力的增加。定义了Ni/Au UBM的Black加速模型的电迁移参数。在测试芯片中集成了一个TaN温度传感器,可以对实际设备温度进行现场测量。这样,可以清楚地监测焦耳热的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信