Ge shallow junction formation by As implantation and flash lamp annealing

K. Osada, T. Fukunaga, K. Shibahara
{"title":"Ge shallow junction formation by As implantation and flash lamp annealing","authors":"K. Osada, T. Fukunaga, K. Shibahara","doi":"10.1109/VTSA.2009.5159271","DOIUrl":null,"url":null,"abstract":"Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.","PeriodicalId":309622,"journal":{"name":"2009 International Symposium on VLSI Technology, Systems, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Technology, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTSA.2009.5159271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.
砷注入和闪光灯退火形成锗浅结
利用As+注入和FLA成功制备了深度约20 nm的Ge浅n+/p结。由于结深受注入能量的限制,通过降低能量可以制备出更浅的结。砷作为掺杂剂的高潜力得到了明确的证明,尽管FLA参数尚未优化。由于在PAI的标本中发现了SPE阻滞,应该寻找其他的通道抑制技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信