Prediction of Test Pattern Count and Test Data Volume for Scan Architectures under Different Input Channel Configurations

Fong-Jyun Tsai, Chong-Siao Ye, Kuen-Jong Lee, Shi-Xuan Zheng, Yu Huang, Wu-Tung Cheng, S. Reddy, M. Kassab, J. Rajski, Chen Wang, Justyna Zawada
{"title":"Prediction of Test Pattern Count and Test Data Volume for Scan Architectures under Different Input Channel Configurations","authors":"Fong-Jyun Tsai, Chong-Siao Ye, Kuen-Jong Lee, Shi-Xuan Zheng, Yu Huang, Wu-Tung Cheng, S. Reddy, M. Kassab, J. Rajski, Chen Wang, Justyna Zawada","doi":"10.1109/ITC44778.2020.9325219","DOIUrl":null,"url":null,"abstract":"As the complexity of industrial integrated circuits continue to increase rapidly, test data compression has now become a de facto technology for large designs to reduce the overall test cost. During the design for test (DFT) planning, it is critical to understand the impact of using different numbers of input/output test channels on test coverage, test cycles, and test data volume. In this paper, two approaches to predict the test pattern counts and test data volumes with different input channel counts are presented, one with the compression tool able to generate channel-scaling patterns and the other without this capability. The results can be used to determine the scan test configuration that results in the smallest or near smallest test data volume. Experiments on industrial circuits show that the average error rates of pattern count prediction for most circuits are less than 10% for both approaches. The error rates of the predicted smallest data volumes are all less than 3.5%. The total ATPG run time can be reduced by a factor of more than 10X compared to the currently used trial-and-error approach.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the complexity of industrial integrated circuits continue to increase rapidly, test data compression has now become a de facto technology for large designs to reduce the overall test cost. During the design for test (DFT) planning, it is critical to understand the impact of using different numbers of input/output test channels on test coverage, test cycles, and test data volume. In this paper, two approaches to predict the test pattern counts and test data volumes with different input channel counts are presented, one with the compression tool able to generate channel-scaling patterns and the other without this capability. The results can be used to determine the scan test configuration that results in the smallest or near smallest test data volume. Experiments on industrial circuits show that the average error rates of pattern count prediction for most circuits are less than 10% for both approaches. The error rates of the predicted smallest data volumes are all less than 3.5%. The total ATPG run time can be reduced by a factor of more than 10X compared to the currently used trial-and-error approach.
不同输入通道配置下扫描架构测试模式数和测试数据量的预测
随着工业集成电路复杂性的不断快速增加,测试数据压缩已经成为大型设计降低整体测试成本的事实上的技术。在测试设计(DFT)计划期间,理解使用不同数量的输入/输出测试通道对测试覆盖率、测试周期和测试数据量的影响是至关重要的。本文提出了两种预测不同输入通道数下的测试模式数和测试数据量的方法,一种方法使用能够生成通道缩放模式的压缩工具,另一种方法没有这种能力。结果可用于确定产生最小或接近最小测试数据量的扫描测试配置。在工业电路上的实验表明,两种方法对大多数电路的模式数预测的平均错误率都小于10%。预测最小数据卷的错误率均小于3.5%。与目前使用的试错方法相比,ATPG的总运行时间可以减少10倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信