Brain-Inspired Computing with Spintronics Devices

S. Tsunegi, J. Torrejon, M. Riou, Flavio Abreu Araujo, V. Cros, J. Grollier, K. Yakushiji, A. Fukushima, S. Yuasa, H. Kubota
{"title":"Brain-Inspired Computing with Spintronics Devices","authors":"S. Tsunegi, J. Torrejon, M. Riou, Flavio Abreu Araujo, V. Cros, J. Grollier, K. Yakushiji, A. Fukushima, S. Yuasa, H. Kubota","doi":"10.1109/IMFEDK.2018.8581955","DOIUrl":null,"url":null,"abstract":"Neural networks and artificial intelligence utilizing artificial neurons and synapses are attracting much attention. Spintronic devices are considered to be suitable for mimicking artificial synapses and artificial neurons because of nonvolatility of information and rich nonlinearity of spin dynamics. We focused on the nonlinearity of spin dynamics and formed a virtual artificial neural network by using the time multiplexing method. By using reservoir computing for learning rules, we succeeded in speech recognition with a high recognition rate of 99.6%. These results pave the way for hardware implementation of artificial intelligence.","PeriodicalId":434417,"journal":{"name":"2018 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2018.8581955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural networks and artificial intelligence utilizing artificial neurons and synapses are attracting much attention. Spintronic devices are considered to be suitable for mimicking artificial synapses and artificial neurons because of nonvolatility of information and rich nonlinearity of spin dynamics. We focused on the nonlinearity of spin dynamics and formed a virtual artificial neural network by using the time multiplexing method. By using reservoir computing for learning rules, we succeeded in speech recognition with a high recognition rate of 99.6%. These results pave the way for hardware implementation of artificial intelligence.
用自旋电子学设备进行大脑启发计算
利用人工神经元和突触的神经网络和人工智能备受关注。自旋电子器件由于信息的非易失性和自旋动力学的丰富非线性,被认为适合于模拟人工突触和人工神经元。针对自旋动力学的非线性特性,采用时间复用方法构建了虚拟人工神经网络。利用库计算学习规则,实现了语音识别,识别率达到99.6%。这些结果为人工智能的硬件实现铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信