Sungyoul Seo, Yong Lee, Hyeonchan Lim, Joohwan Lee, Hongbom Yoo, Yojoung Kim, Sungho Kang
{"title":"Scan Chain Reordering-Aware X-Filling and Stitching for Scan Shift Power Reduction","authors":"Sungyoul Seo, Yong Lee, Hyeonchan Lim, Joohwan Lee, Hongbom Yoo, Yojoung Kim, Sungho Kang","doi":"10.1109/ATS.2015.8","DOIUrl":null,"url":null,"abstract":"As a scan-based testing enables higher test coverage and faster test time than alternative ways, it is widely used by most system-on-chip (SoC) designers. However, since the number of logic gates is over one hundred million gates, a number of scan cells lead to excessive power consumption and it produces a low shifting frequency during the scan shifting mode. In this paper, we present a new scan shift power reduction method based on a scan chain reordering (SR)-aware X-filling and a stitching method. There is no need to require an additional logic for reducing the scan shift power, just a little routing overhead. Experimental results show that this method improves scan shift power consumption on benchmark circuits in most cases compared to the results of the previous works.","PeriodicalId":256879,"journal":{"name":"2015 IEEE 24th Asian Test Symposium (ATS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 24th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2015.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
As a scan-based testing enables higher test coverage and faster test time than alternative ways, it is widely used by most system-on-chip (SoC) designers. However, since the number of logic gates is over one hundred million gates, a number of scan cells lead to excessive power consumption and it produces a low shifting frequency during the scan shifting mode. In this paper, we present a new scan shift power reduction method based on a scan chain reordering (SR)-aware X-filling and a stitching method. There is no need to require an additional logic for reducing the scan shift power, just a little routing overhead. Experimental results show that this method improves scan shift power consumption on benchmark circuits in most cases compared to the results of the previous works.