K. Nii, M. Yabuuchi, Y. Ishii, Miki Tanaka, M. Igarashi, K. Fukuoka, S. Tanaka
{"title":"A dynamic/static SRAM power management scheme for DVFS and AVS in advanced automotive infotainment SoCs","authors":"K. Nii, M. Yabuuchi, Y. Ishii, Miki Tanaka, M. Igarashi, K. Fukuoka, S. Tanaka","doi":"10.1109/VLSIT.2016.7573395","DOIUrl":null,"url":null,"abstract":"An embedded SRAM power management scheme using 16 nm FinFET technology is demonstrated in automotive infotainment SoCs. By introducing write-assist circuit technique, SRAM can operate down to 0.5 V wide voltage range, achieving DVFS for efficient power saving. Fast resume standby mode is also developed for reducing the leakage power of L1 cache under 2 GHz CPU operation. We confirmed that proposed thermal control scheme can be protected by thermal runaway failure.","PeriodicalId":129300,"journal":{"name":"2016 IEEE Symposium on VLSI Technology","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2016.7573395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An embedded SRAM power management scheme using 16 nm FinFET technology is demonstrated in automotive infotainment SoCs. By introducing write-assist circuit technique, SRAM can operate down to 0.5 V wide voltage range, achieving DVFS for efficient power saving. Fast resume standby mode is also developed for reducing the leakage power of L1 cache under 2 GHz CPU operation. We confirmed that proposed thermal control scheme can be protected by thermal runaway failure.