Novel evolutionary planning technique for flexible-grid transmission in optical networks

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Matheus R. Sena , Pedro J. Freire , Leonardo D. Coelho , Alex F. Santos , Antonio Napoli , Raul C. Almeida Jr.
{"title":"Novel evolutionary planning technique for flexible-grid transmission in optical networks","authors":"Matheus R. Sena ,&nbsp;Pedro J. Freire ,&nbsp;Leonardo D. Coelho ,&nbsp;Alex F. Santos ,&nbsp;Antonio Napoli ,&nbsp;Raul C. Almeida Jr.","doi":"10.1016/j.osn.2021.100648","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This paper proposes a novel joint resource allocation technique for flexible-grid systems by utilizing non-dominant sort </span>genetic algorithm<span> (NSGA-II) in a multi-objective optimization framework. It pioneers the implementation of an evolutionary mechanism to optimize resources as means of mitigation of physical layer impairments. This investigation initially introduces a proposal in which bandwidth reduction, maximization of the minimum signal-to-noise ratio (SNR) margin, and minimization/maximization of the sum of SNR margins are studied under dual-objective </span></span>Pareto analysis in the link-level scenario. Later, the technique extends existing provisioning strategies for network planning by targeting the reduction of blocking and spectral utilization of optical connections.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100648"},"PeriodicalIF":1.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157342772100045X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel joint resource allocation technique for flexible-grid systems by utilizing non-dominant sort genetic algorithm (NSGA-II) in a multi-objective optimization framework. It pioneers the implementation of an evolutionary mechanism to optimize resources as means of mitigation of physical layer impairments. This investigation initially introduces a proposal in which bandwidth reduction, maximization of the minimum signal-to-noise ratio (SNR) margin, and minimization/maximization of the sum of SNR margins are studied under dual-objective Pareto analysis in the link-level scenario. Later, the technique extends existing provisioning strategies for network planning by targeting the reduction of blocking and spectral utilization of optical connections.

一种新的光网络柔性电网传输进化规划技术
在多目标优化框架下,利用非优势排序遗传算法(NSGA-II),提出了一种柔性网格系统联合资源分配的新方法。它率先实施了一种进化机制,以优化资源,作为减轻物理层损伤的手段。本研究首先提出了一种建议,该建议在链路级场景的双目标Pareto分析下,研究带宽减少、最小信噪比(SNR)边际最大化以及信噪比边际之和的最小化/最大化。随后,该技术通过减少光连接的阻塞和频谱利用率,扩展了现有的网络规划供应策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信