Fabrication and characterization of embedded active and passive device for wireless application

Se-Hoon Park, Jongin Ryu, J. C. Kim, N. Kang, Jong Chul Park, Young-Ho Kim
{"title":"Fabrication and characterization of embedded active and passive device for wireless application","authors":"Se-Hoon Park, Jongin Ryu, J. C. Kim, N. Kang, Jong Chul Park, Young-Ho Kim","doi":"10.1109/ECTC.2010.5490663","DOIUrl":null,"url":null,"abstract":"In this study, the research of embedded active and passive package is carried out for miniaturized wireless module. We fabricated very small RF module which one bare chip (0.3mm × 0.5mm, SPDT switch IC) and three 0603(0.6mm × 0.3mm, MLCC) passive devices were buried into within 1.85mm × 1.5mm substrate. Used materials were compatible with PCB process such as polymer laminating, dry film patterning, electroless-electrolytic copper plating and atmospheric plasma treatment. We studied low pressure bonding process using rheology dependence of polymer on temperature to prevent fracture or crack from embedding chips into PCB. The embedded chip and passives were electrically interconnected by small laser via(30µm) and Cu pattern plating process after atmospheric pressure plasma treatment, which revealed an effect on filling of micro via and shape of fine pattern. The interconnection between chip pad and Cu were evaluated by SEM image, which shows Cu pattern of PCB and pad of passive was interconnected without intermetallic formation. However, intermetallic, Cu-Sn-Ni, formed between passive electrode and plated Cu layer, and molten Sn is segregated along the wall of via hole after reflow. DSC (Differenntial Scanning Calorimetry) analysis was employed to calculate and optimize the amount of curing. Polymer showed maximum 90° peel strength (~0.7kgf/cm) with Cu pattern when Cu is plated on polymer after pre-curing was 80~90% completed. The RF characterization of embedded chip PCB was evaluated by measuring s-parameters (S11; return loss and S21; insertion loss). Return loss was below 20dB up to 4GHz. As a results, the embedded chip module is able to be applied for 2~5 GHz frequency application (Bluetooth and WiFi) with small size and good performance.","PeriodicalId":429629,"journal":{"name":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2010.5490663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, the research of embedded active and passive package is carried out for miniaturized wireless module. We fabricated very small RF module which one bare chip (0.3mm × 0.5mm, SPDT switch IC) and three 0603(0.6mm × 0.3mm, MLCC) passive devices were buried into within 1.85mm × 1.5mm substrate. Used materials were compatible with PCB process such as polymer laminating, dry film patterning, electroless-electrolytic copper plating and atmospheric plasma treatment. We studied low pressure bonding process using rheology dependence of polymer on temperature to prevent fracture or crack from embedding chips into PCB. The embedded chip and passives were electrically interconnected by small laser via(30µm) and Cu pattern plating process after atmospheric pressure plasma treatment, which revealed an effect on filling of micro via and shape of fine pattern. The interconnection between chip pad and Cu were evaluated by SEM image, which shows Cu pattern of PCB and pad of passive was interconnected without intermetallic formation. However, intermetallic, Cu-Sn-Ni, formed between passive electrode and plated Cu layer, and molten Sn is segregated along the wall of via hole after reflow. DSC (Differenntial Scanning Calorimetry) analysis was employed to calculate and optimize the amount of curing. Polymer showed maximum 90° peel strength (~0.7kgf/cm) with Cu pattern when Cu is plated on polymer after pre-curing was 80~90% completed. The RF characterization of embedded chip PCB was evaluated by measuring s-parameters (S11; return loss and S21; insertion loss). Return loss was below 20dB up to 4GHz. As a results, the embedded chip module is able to be applied for 2~5 GHz frequency application (Bluetooth and WiFi) with small size and good performance.
用于无线应用的嵌入式有源和无源设备的制造和特性
本课题针对小型化无线模块进行了嵌入式有源和无源封装的研究。我们制作了一个非常小的射频模块,将一个裸芯片(0.3mm × 0.5mm, SPDT开关IC)和三个0603(0.6mm × 0.3mm, MLCC)无源器件埋在1.85mm × 1.5mm的衬底内。使用的材料与PCB工艺兼容,如聚合物层压,干膜图案,化学电解镀铜和大气等离子体处理。利用聚合物随温度的流变特性,研究了低压键合工艺,以防止芯片嵌入PCB时发生断裂或裂纹。采用小激光通孔(30µm)和常压等离子体处理后的镀铜工艺将芯片与无源材料电互连,揭示了微通孔填充和精细图案形状的影响。SEM图像显示,PCB板上的Cu图案与无源板上的Cu图案相互连接,没有金属间的形成。但在钝化电极与镀铜层之间形成金属间化合物Cu-Sn- ni,熔锡回流后沿通孔壁析出。采用DSC(差示扫描量热法)分析计算和优化固化量。预固化完成80~90%后镀铜,聚合物显示出最大的90°剥离强度(~0.7kgf/cm)。通过测量s参数(S11;回报损失和S21;插入损耗)。4GHz时回波损耗低于20dB。因此,该嵌入式芯片模块可以应用于2~5 GHz频率的应用(蓝牙和WiFi),体积小,性能好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信