{"title":"Evaluating the impact of spike and flicker noise in phase change memories","authors":"Salin Junsangsri, F. Lombardi, Jie Han","doi":"10.1109/DFT.2015.7315126","DOIUrl":null,"url":null,"abstract":"This paper presents a simulation-based analysis of spike and flicker noise in a Phase Change Memory (PCM); this investigation is based on HSPICE simulation by taking into account cell-level (with its neighbors) and array-level considerations. State switching phenomena in binary PCM memories are dealt in detail to assess the impact of these two types of noise. It is shown that a lower feature size is of concern for flicker noise in terms of value and percentage variation (while not substantially affecting array-level performance). This paper also shows that spike noise has a radically different behavior: spike noise shows a dependency on the PCM resistance more than the type of state of the PCM. It increases substantially when the amorphous resistance increases and has a nearly constant value when the memory cell is changing to an amorphous state.","PeriodicalId":383972,"journal":{"name":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","volume":"1 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2015.7315126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a simulation-based analysis of spike and flicker noise in a Phase Change Memory (PCM); this investigation is based on HSPICE simulation by taking into account cell-level (with its neighbors) and array-level considerations. State switching phenomena in binary PCM memories are dealt in detail to assess the impact of these two types of noise. It is shown that a lower feature size is of concern for flicker noise in terms of value and percentage variation (while not substantially affecting array-level performance). This paper also shows that spike noise has a radically different behavior: spike noise shows a dependency on the PCM resistance more than the type of state of the PCM. It increases substantially when the amorphous resistance increases and has a nearly constant value when the memory cell is changing to an amorphous state.