A. Pal, E. Bazizi, Liu Jiang, Mehdi Saremi, B. Alexander, Buvna Ayyagari-Sangamalli
{"title":"Self-Aligned Single Diffusion Break Technology Optimization Through Material Engineering for Advanced CMOS Nodes","authors":"A. Pal, E. Bazizi, Liu Jiang, Mehdi Saremi, B. Alexander, Buvna Ayyagari-Sangamalli","doi":"10.23919/SISPAD49475.2020.9241625","DOIUrl":null,"url":null,"abstract":"Though single diffusion break (SDB) acts as an efficient area-scaling enabler for current CMOS technology nodes, it degrades devices’ variability performance, which can be mitigated by enabling self-aligned SDB (SA-SDB) technology. Unfortunately, SA-SDB causes PMOS performance degradation due to channel stress relaxation. To solve this issue, we propose material engineering of SA-SDB technology to improve PMOS performance. Using 3D-TCAD simulations, we show that by using stressed oxide for the SA-SDB cavity fill, both PMOS and NMOS device performance can be improved. Furthermore, using ring-oscillator as a representative circuit for CMOS technology evaluation, we showed that the circuit performance can be improved by 13-21% for 2-3 GPa stress in the oxide, thus enabling simultaneous area-scaling and circuit and variability performance improvement with SA-SDB technology for advanced CMOS nodes.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Though single diffusion break (SDB) acts as an efficient area-scaling enabler for current CMOS technology nodes, it degrades devices’ variability performance, which can be mitigated by enabling self-aligned SDB (SA-SDB) technology. Unfortunately, SA-SDB causes PMOS performance degradation due to channel stress relaxation. To solve this issue, we propose material engineering of SA-SDB technology to improve PMOS performance. Using 3D-TCAD simulations, we show that by using stressed oxide for the SA-SDB cavity fill, both PMOS and NMOS device performance can be improved. Furthermore, using ring-oscillator as a representative circuit for CMOS technology evaluation, we showed that the circuit performance can be improved by 13-21% for 2-3 GPa stress in the oxide, thus enabling simultaneous area-scaling and circuit and variability performance improvement with SA-SDB technology for advanced CMOS nodes.