{"title":"Methodology for predicting C4 non-wets during the chip attach process","authors":"V. D. Khanna, S. M. Sri-Jayantha","doi":"10.1109/ECTC.2010.5490842","DOIUrl":null,"url":null,"abstract":"Balancing the level of substrate warp at reflow with other sources contributing to C4 non-wets is an important problem. To address this, a methodology to predict the probability of non-wets during the chip attach process of an organic package has been developed. A technique for quantifying the convex or concave warp of a substrate in the form of a Shape Inversion (SI) plot is introduced. Geometrical factors that influence non-wets such as C4 height, the pad's relative location, collapsed solder height etc. are described and their individual contributions to the non-wet conditions are computed. Combining these contributions onto the SI plot allows for a graphical representation of the non-wet probability. The technique is applied to a product substrate and the results compared with the actual yield observed during chip assembly.","PeriodicalId":429629,"journal":{"name":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2010.5490842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Balancing the level of substrate warp at reflow with other sources contributing to C4 non-wets is an important problem. To address this, a methodology to predict the probability of non-wets during the chip attach process of an organic package has been developed. A technique for quantifying the convex or concave warp of a substrate in the form of a Shape Inversion (SI) plot is introduced. Geometrical factors that influence non-wets such as C4 height, the pad's relative location, collapsed solder height etc. are described and their individual contributions to the non-wet conditions are computed. Combining these contributions onto the SI plot allows for a graphical representation of the non-wet probability. The technique is applied to a product substrate and the results compared with the actual yield observed during chip assembly.