High Temperature Thermal Characteristics of Microelectronic Packages

Gene K. Baxter, J. Anslow
{"title":"High Temperature Thermal Characteristics of Microelectronic Packages","authors":"Gene K. Baxter, J. Anslow","doi":"10.1109/TPHP.1977.1135232","DOIUrl":null,"url":null,"abstract":"This paper describes results of the computer-analysis pottion of a research program which was conducted to study the thermal characteristics of microcircuits in high temperature environments. A special IC chip, bonded to an alumina chip carrier, was modeled for these simulations. It was found that thermal resistance values and thermal time constants nearly double when the chip carrier temperature is increased from 70 to 257°C. For a chip power dissipation of 1.5 W, the peak junction temperature increased from 138 to 385°C, an increase of 247°C, while the chip carrier only increased by 187°C. The thermal time constant of the junction peak temperature rise, measured relative to the chip carrier, increased from 15 to 26 µs over the same temperature range.","PeriodicalId":387212,"journal":{"name":"IEEE Transactions on Parts, Hybrids, and Packaging","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1977-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parts, Hybrids, and Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPHP.1977.1135232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes results of the computer-analysis pottion of a research program which was conducted to study the thermal characteristics of microcircuits in high temperature environments. A special IC chip, bonded to an alumina chip carrier, was modeled for these simulations. It was found that thermal resistance values and thermal time constants nearly double when the chip carrier temperature is increased from 70 to 257°C. For a chip power dissipation of 1.5 W, the peak junction temperature increased from 138 to 385°C, an increase of 247°C, while the chip carrier only increased by 187°C. The thermal time constant of the junction peak temperature rise, measured relative to the chip carrier, increased from 15 to 26 µs over the same temperature range.
微电子封装的高温热特性
本文介绍了研究微电路在高温环境下的热特性的计算机分析程序的结果。一个特殊的集成电路芯片,连接到一个氧化铝芯片载体,为这些模拟建模。当芯片载流子温度从70℃升高到257℃时,热阻值和热时间常数几乎增加了一倍。当芯片功耗为1.5 W时,峰值结温从138℃升高到385℃,升高247℃,而芯片载流子仅升高187℃。在相同的温度范围内,结峰温升的热时间常数(相对于芯片载流子)从15µs增加到26µs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信