Automatic Device Model Parameter Extractions via Hybrid Intelligent Methodology

cheng-che liu, Yiming Li, Ya-Shu Yang, Chieh-Yang Chen, Min-Hui Chuang
{"title":"Automatic Device Model Parameter Extractions via Hybrid Intelligent Methodology","authors":"cheng-che liu, Yiming Li, Ya-Shu Yang, Chieh-Yang Chen, Min-Hui Chuang","doi":"10.23919/SISPAD49475.2020.9241613","DOIUrl":null,"url":null,"abstract":"We report an advanced hybrid intelligent methodology for device model parameter extractions combining multiobjective evolutionary algorithms, numerical optimization methods, and unsupervised learning neural networks on a unified optimization framework. The results between experimentally measured data and the calculation from industrial standard compact models are accurate, stable and convergent rapidly for all I-V curves. Verifications from diodes, bipolar transistors, MOSFETs, FinFETs, to nanowire MOSFETs confirm the robustness of the developed prototype, where the extraction is within 5% of accuracy.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report an advanced hybrid intelligent methodology for device model parameter extractions combining multiobjective evolutionary algorithms, numerical optimization methods, and unsupervised learning neural networks on a unified optimization framework. The results between experimentally measured data and the calculation from industrial standard compact models are accurate, stable and convergent rapidly for all I-V curves. Verifications from diodes, bipolar transistors, MOSFETs, FinFETs, to nanowire MOSFETs confirm the robustness of the developed prototype, where the extraction is within 5% of accuracy.
基于混合智能方法的设备模型参数自动提取
我们报告了一种先进的混合智能方法,用于设备模型参数提取,将多目标进化算法、数值优化方法和无监督学习神经网络结合在一个统一的优化框架上。实验测量数据与工业标准紧凑模型计算结果吻合准确、稳定、收敛速度快。从二极管、双极晶体管、mosfet、finfet到纳米线mosfet的验证证实了所开发原型的稳健性,其中提取精度在5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信