Temperature and doping dependence of the radiative properties of silicon: Drude model revisited

Bong Jae Lee, Zhuomin M. Zhang
{"title":"Temperature and doping dependence of the radiative properties of silicon: Drude model revisited","authors":"Bong Jae Lee, Zhuomin M. Zhang","doi":"10.1109/RTP.2005.1613717","DOIUrl":null,"url":null,"abstract":"Understanding the radiative properties of silicon is crucial to accurate measurement of the temperature of silicon wafer during rapid thermal processing (RTP). Prediction of the radiative properties requires precise knowledge of the dielectric function of silicon in RTP environments. In general, the dielectric function or equivalently optical constants of silicon are complicated functions of the wavelength, temperature, and dopant concentration. To model the free-carrier absorption of doped silicon, the Drude model has been used in many literatures. However, some of the existing Drude model parameters do not agree with other published data. Hence, the present study carefully revisits the Drude model parameters such as carrier concentrations and carrier scattering times. Based on updated Drude model parameters, the absorption coefficients of doped silicon at various dopant concentrations and temperatures are calculated and compared with the available measured data. Reasonably good agreements between the prediction and experimental data are found, suggesting that present Drude model is an efficient way to model the dielectric function of doped silicon","PeriodicalId":253409,"journal":{"name":"2005 13th International Conference on Advanced Thermal Processing of Semiconductors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 13th International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2005.1613717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Understanding the radiative properties of silicon is crucial to accurate measurement of the temperature of silicon wafer during rapid thermal processing (RTP). Prediction of the radiative properties requires precise knowledge of the dielectric function of silicon in RTP environments. In general, the dielectric function or equivalently optical constants of silicon are complicated functions of the wavelength, temperature, and dopant concentration. To model the free-carrier absorption of doped silicon, the Drude model has been used in many literatures. However, some of the existing Drude model parameters do not agree with other published data. Hence, the present study carefully revisits the Drude model parameters such as carrier concentrations and carrier scattering times. Based on updated Drude model parameters, the absorption coefficients of doped silicon at various dopant concentrations and temperatures are calculated and compared with the available measured data. Reasonably good agreements between the prediction and experimental data are found, suggesting that present Drude model is an efficient way to model the dielectric function of doped silicon
温度和掺杂对硅辐射特性的依赖:德鲁德模型的重新审视
在快速热加工(RTP)过程中,了解硅的辐射特性对于精确测量硅片的温度至关重要。辐射特性的预测需要精确地了解硅在RTP环境中的介电函数。一般来说,硅的介电函数或等效光学常数是波长、温度和掺杂剂浓度的复杂函数。为了模拟掺杂硅的自由载流子吸收,许多文献都使用了Drude模型。然而,现有的一些德鲁德模型参数与其他已发表的数据不一致。因此,本研究仔细地重新审视了载流子浓度和载流子散射时间等德鲁德模型参数。基于更新的德鲁德模型参数,计算了不同掺杂浓度和温度下掺杂硅的吸收系数,并与实测数据进行了比较。结果表明,该模型是模拟掺杂硅介电函数的一种有效方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信