R. Cantoro, Dario Foti, Sandro Sartoni, M. Reorda, L. Anghel, M. Portolan
{"title":"New Perspectives on Core In-field Path Delay Test","authors":"R. Cantoro, Dario Foti, Sandro Sartoni, M. Reorda, L. Anghel, M. Portolan","doi":"10.1109/ITC44778.2020.9325260","DOIUrl":null,"url":null,"abstract":"Path Delay fault test currently exploits DfT-based techniques, mainly relying on scan chains, widely supported by commercial tools. However, functional testing may be a desirable choice in this context because it allows to catch faults at-speed with no hardware overhead and it can be used both for endof-manufacturing tests and for in-field test. The purpose of this article is to compare the results that can be achieved with both approaches. This work is based on an open-source RISC-V-based processor core as benchmark device. Gathered results show that there is no correlation between stuck-at and path delay fault coverage, and provide guidelines for developing more effective functional test.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Path Delay fault test currently exploits DfT-based techniques, mainly relying on scan chains, widely supported by commercial tools. However, functional testing may be a desirable choice in this context because it allows to catch faults at-speed with no hardware overhead and it can be used both for endof-manufacturing tests and for in-field test. The purpose of this article is to compare the results that can be achieved with both approaches. This work is based on an open-source RISC-V-based processor core as benchmark device. Gathered results show that there is no correlation between stuck-at and path delay fault coverage, and provide guidelines for developing more effective functional test.