Comparative Study of Effective Cooling in Microchannel Heat Sinks (MCHS) With Nanofluid and Hydrophobic Nanostructures Using Computational Fluid Dynamics

D. Jennings, Sonya T. Smith
{"title":"Comparative Study of Effective Cooling in Microchannel Heat Sinks (MCHS) With Nanofluid and Hydrophobic Nanostructures Using Computational Fluid Dynamics","authors":"D. Jennings, Sonya T. Smith","doi":"10.1115/ipack2020-2527","DOIUrl":null,"url":null,"abstract":"\n The goal of this research is to present an analytical model of nanostructures and study the effects of their geometry on the performance of micro channels. The pressure drop experienced by micro channels is of interest as it presents a limit on forced convection heat transfer. This work will demonstrate how the presence of nanostructures primarily affects pressure drop as well as other cooling flow characteristics. Additional work in the impact of microchannel cross-sectional geometry and friction factor formulation is provided as well. Multiple transient analyses were performed in ANSYS FLUENT to ascertain performance characteristics of microchannels without the presence of hydrophobic nanostructures. The results were compared to the analytical model developed in this study.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2020-2527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of this research is to present an analytical model of nanostructures and study the effects of their geometry on the performance of micro channels. The pressure drop experienced by micro channels is of interest as it presents a limit on forced convection heat transfer. This work will demonstrate how the presence of nanostructures primarily affects pressure drop as well as other cooling flow characteristics. Additional work in the impact of microchannel cross-sectional geometry and friction factor formulation is provided as well. Multiple transient analyses were performed in ANSYS FLUENT to ascertain performance characteristics of microchannels without the presence of hydrophobic nanostructures. The results were compared to the analytical model developed in this study.
基于计算流体动力学的纳米流体和疏水纳米结构微通道散热器(MCHS)有效冷却比较研究
本研究的目的是建立纳米结构的解析模型,并研究其几何形状对微通道性能的影响。微通道所经历的压降是有趣的,因为它对强制对流传热提出了限制。这项工作将展示纳米结构的存在如何主要影响压降以及其他冷却流动特性。在微通道横截面几何形状和摩擦系数公式的影响下提供了额外的工作。在ANSYS FLUENT中进行了多次瞬态分析,以确定不存在疏水纳米结构的微通道的性能特征。结果与本研究建立的分析模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信