{"title":"Nano Self-Assembled Nanoparticle Ion-Sensitive Field-Effect Transistors for Acetylcholine Biosensing","authors":"Yi Liu, A. Erdman, T. Cui","doi":"10.1109/NEMS.2007.352040","DOIUrl":null,"url":null,"abstract":"We present an inexpensive way to fabricate high-performance nanoparticle based ion-sensitive field-effect transistors (ISFETs) for the acetylcholine biosensing application. The fabrication is implemented with a low-cost layer-by-layer nano self-assembly and microfabrication techniques. Self-assembled silica nanoparticle thin film and indium oxide nanoparticle thin film work as the gate dielectric and semiconducting channel respectively. The ISFETs operate at a low-voltage range of less than 2 V, and has a high mobility of 43.10 cm2/Vs. Acetylcholine in a concentration as low as 100 nM could be detected with this sensor. The results presented herein suggest a route to inexpensive, high mobility ion-sensitive field-effect transistors for biosensing applications.","PeriodicalId":364039,"journal":{"name":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2007.352040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present an inexpensive way to fabricate high-performance nanoparticle based ion-sensitive field-effect transistors (ISFETs) for the acetylcholine biosensing application. The fabrication is implemented with a low-cost layer-by-layer nano self-assembly and microfabrication techniques. Self-assembled silica nanoparticle thin film and indium oxide nanoparticle thin film work as the gate dielectric and semiconducting channel respectively. The ISFETs operate at a low-voltage range of less than 2 V, and has a high mobility of 43.10 cm2/Vs. Acetylcholine in a concentration as low as 100 nM could be detected with this sensor. The results presented herein suggest a route to inexpensive, high mobility ion-sensitive field-effect transistors for biosensing applications.