{"title":"Yield and energy tradeoffs of an NVLatch design using radial sampling","authors":"Adam Issa, R. Kanj, A. Chehab, R. Joshi","doi":"10.1109/ICICDT.2017.7993511","DOIUrl":null,"url":null,"abstract":"Nonvolatile latches are increasingly popular with the advent of IoT design. We study the yield energy tradeoff of the backup mechanism of an STT-MTJ based nonvolatile latch. For the yield analysis, we rely on Hicks and Wheeling methodology for multi-cone radial sampling for the purpose of rare fail estimation. Yield is shown to be delimited by the Parallel-to-AntiParallel magnetic angle transitions. To accommodate for the slower cells, we note an increase in the average energy requirements for the backup mechanism. Simulations indicate an increase of 10%–40% for the average energy requirements to achieve an ideal yield requirement close to 99% for different number of components.","PeriodicalId":382735,"journal":{"name":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2017.7993511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nonvolatile latches are increasingly popular with the advent of IoT design. We study the yield energy tradeoff of the backup mechanism of an STT-MTJ based nonvolatile latch. For the yield analysis, we rely on Hicks and Wheeling methodology for multi-cone radial sampling for the purpose of rare fail estimation. Yield is shown to be delimited by the Parallel-to-AntiParallel magnetic angle transitions. To accommodate for the slower cells, we note an increase in the average energy requirements for the backup mechanism. Simulations indicate an increase of 10%–40% for the average energy requirements to achieve an ideal yield requirement close to 99% for different number of components.