Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao
{"title":"Statistical techniques for predicting system-level failure using stress-test data","authors":"Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao","doi":"10.1109/VTS.2015.7116260","DOIUrl":null,"url":null,"abstract":"In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.