Statistical techniques for predicting system-level failure using stress-test data

Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao
{"title":"Statistical techniques for predicting system-level failure using stress-test data","authors":"Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao","doi":"10.1109/VTS.2015.7116260","DOIUrl":null,"url":null,"abstract":"In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.
使用压力测试数据预测系统级故障的统计技术
本文提出了一种收集和分析芯片故障信号的新方案。在非破坏性应力条件下应用扫描模式会导致数字芯片输出错误。从以持续故障模式收集的二进制错配响应中,通过对每组错配进行分组和计数,形成数字数据特征,从而定义芯片的“模拟”故障特征。我们使用机器学习来探索系统级测试(SLT)故障的预测模型,通过比较来自已知SLT通过/失败箱的芯片样本的特征。明确区分SLT通过/失败芯片的重要特性。给出了一种28纳米1.2 ghz四核低功耗处理器的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信