{"title":"Mesh-based impedance sensitivity formulation for DC/AC Power Integrity design and diagnosis","authors":"N. Ambasana, B. Nayak, D. Gope","doi":"10.1109/EPEPS.2016.7835416","DOIUrl":null,"url":null,"abstract":"Accurate Power Distribution Network (PDN) design is crucial for Signal/Power Integrity (SI/PI) and Electromagnetic Interference (EMI) compliance. Achieving target power-ground (PG) noise levels for low power complex PDNs requires several design and analysis cycles. Although several classes of analysis tools, 2.5D and 3D, are commercially available, the presence of design tools are limited e.g. parametric design space exploration using multiple forward analysis. In this work, a frequency domain mesh-based sensitivity formulation for DC and AC impedance of PDNs is proposed. The two main objectives include: (i) highlighting layout regions to the designer for maximum impact in achieving target specifications and (ii) predicting the results of a design variant with mesh-based sensitivity information from the base-design. The time required for updating the results for the design variant is negligible compared to a complete re-simulation.","PeriodicalId":241629,"journal":{"name":"2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS)","volume":"107 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2016.7835416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate Power Distribution Network (PDN) design is crucial for Signal/Power Integrity (SI/PI) and Electromagnetic Interference (EMI) compliance. Achieving target power-ground (PG) noise levels for low power complex PDNs requires several design and analysis cycles. Although several classes of analysis tools, 2.5D and 3D, are commercially available, the presence of design tools are limited e.g. parametric design space exploration using multiple forward analysis. In this work, a frequency domain mesh-based sensitivity formulation for DC and AC impedance of PDNs is proposed. The two main objectives include: (i) highlighting layout regions to the designer for maximum impact in achieving target specifications and (ii) predicting the results of a design variant with mesh-based sensitivity information from the base-design. The time required for updating the results for the design variant is negligible compared to a complete re-simulation.