{"title":"Modeling, verification and pattern generation for reconfigurable scan networks","authors":"R. Baranowski, M. Kochte, H. Wunderlich","doi":"10.1109/TEST.2012.6401555","DOIUrl":null,"url":null,"abstract":"Reconfigurable scan architectures allow flexible integration and efficient access to infrastructure in SoCs, e.g. for test, diagnosis, repair or debug. Such scan networks are often hierarchical and have complex structural and functional dependencies. For instance, the IEEE P1687 proposal, known as IJTAG, allows integration of multiplexed scan networks with arbitrary internal control signals. Common approaches for scan verification based on static structural analysis and functional simulation are not sufficient to ensure correct operation of these types of architectures. Hierarchy and flexibility may result in complex or even contradicting configuration requirements to access single elements. Sequential logic justification is therefore mandatory both to verify the validity of a scan network, and to generate the required access sequences. This work presents a formal method for verification of reconfigurable scan architectures, as well as pattern retargeting, i.e. generation of required scan-in data. The method is based on a formal model of structural and functional dependencies. Network verification and pattern retargeting is mapped to a Boolean satisfiability problem, which enables the use of efficient SAT solvers to exhaustively explore the search space of valid scan configurations.","PeriodicalId":353290,"journal":{"name":"2012 IEEE International Test Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2012.6401555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
Reconfigurable scan architectures allow flexible integration and efficient access to infrastructure in SoCs, e.g. for test, diagnosis, repair or debug. Such scan networks are often hierarchical and have complex structural and functional dependencies. For instance, the IEEE P1687 proposal, known as IJTAG, allows integration of multiplexed scan networks with arbitrary internal control signals. Common approaches for scan verification based on static structural analysis and functional simulation are not sufficient to ensure correct operation of these types of architectures. Hierarchy and flexibility may result in complex or even contradicting configuration requirements to access single elements. Sequential logic justification is therefore mandatory both to verify the validity of a scan network, and to generate the required access sequences. This work presents a formal method for verification of reconfigurable scan architectures, as well as pattern retargeting, i.e. generation of required scan-in data. The method is based on a formal model of structural and functional dependencies. Network verification and pattern retargeting is mapped to a Boolean satisfiability problem, which enables the use of efficient SAT solvers to exhaustively explore the search space of valid scan configurations.