Core network interface architecture and latency constrained on-chip communication

Praveen Bhojwani, R. Mahapatra
{"title":"Core network interface architecture and latency constrained on-chip communication","authors":"Praveen Bhojwani, R. Mahapatra","doi":"10.1109/ISQED.2006.41","DOIUrl":null,"url":null,"abstract":"This paper proposes a core network interface (CNI) architecture to interface IP cores with on-chip networks. Besides the basic functionality of packetizing communication requests and responses, we expect the CNI to provide additional services critical to communication in complex systems-on-a-chip (SoC). A CNI for interfacing with OCP-compliant core interfaces was developed for architecture validation. With the support of a modified on-chip router, the CNI was setup to bound on-chip communication latency jitter. We observed that jitter due to inefficient virtual channel allocation in a particular configuration of an on-chip interconnection network lead to latency variations of up to 400%. Using a class-based virtual channel allocation scheme in a 2D torus network, we provide for predictable end-to-end latency. While the proposed scheme does not guarantee least possible end-to-end latency, it provides for constrained bounds","PeriodicalId":138839,"journal":{"name":"7th International Symposium on Quality Electronic Design (ISQED'06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Quality Electronic Design (ISQED'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2006.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper proposes a core network interface (CNI) architecture to interface IP cores with on-chip networks. Besides the basic functionality of packetizing communication requests and responses, we expect the CNI to provide additional services critical to communication in complex systems-on-a-chip (SoC). A CNI for interfacing with OCP-compliant core interfaces was developed for architecture validation. With the support of a modified on-chip router, the CNI was setup to bound on-chip communication latency jitter. We observed that jitter due to inefficient virtual channel allocation in a particular configuration of an on-chip interconnection network lead to latency variations of up to 400%. Using a class-based virtual channel allocation scheme in a 2D torus network, we provide for predictable end-to-end latency. While the proposed scheme does not guarantee least possible end-to-end latency, it provides for constrained bounds
核心网络接口架构和延迟限制片上通信
本文提出了一种核心网络接口(CNI)架构,将IP核与片上网络连接起来。除了打包通信请求和响应的基本功能外,我们希望CNI为复杂的片上系统(SoC)中的通信提供额外的关键服务。开发了一个用于与兼容ocp的核心接口接口的CNI,用于体系结构验证。在改进的片上路由器的支持下,将CNI设置为绑定片上通信延迟抖动。我们观察到,在片上互连网络的特定配置中,由于低效的虚拟通道分配而导致的抖动导致延迟变化高达400%。在二维环面网络中使用基于类的虚拟信道分配方案,我们提供了可预测的端到端延迟。虽然提议的方案不能保证端到端延迟最小,但它提供了受限的边界
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信