Shirong Huang, Yong Zhang, Shuangxi Sun, Xiaogang Fan, Ling Wang, Yifeng Fu, Yan Zhang, Johan Liu
{"title":"Graphene based heat spreader for high power chip cooling using flip-chip technology","authors":"Shirong Huang, Yong Zhang, Shuangxi Sun, Xiaogang Fan, Ling Wang, Yifeng Fu, Yan Zhang, Johan Liu","doi":"10.1109/EPTC.2013.6745740","DOIUrl":null,"url":null,"abstract":"Monolayer graphene was synthesized through thermal chemical vapor deposition (TCVD) as heat spreader for chip cooling. Platinum (Pt) serpentine functioned as hot spot on the thermal testing chip. The thermal testing chip with monolayer graphene film attached was bonded using flip-chip technology. The temperature at the hot spot with a monolayer graphene film as heat spreader was decreased by about 12°C and had a more uniform temperature compared to those without graphene heat spreader when driven by a heat flux of about 640W/cm2. Further improvements to the cooling performance of graphene heat spreader could be made by optimizing the synthesis parameters and transfer process of graphene films.","PeriodicalId":210691,"journal":{"name":"2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2013.6745740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Monolayer graphene was synthesized through thermal chemical vapor deposition (TCVD) as heat spreader for chip cooling. Platinum (Pt) serpentine functioned as hot spot on the thermal testing chip. The thermal testing chip with monolayer graphene film attached was bonded using flip-chip technology. The temperature at the hot spot with a monolayer graphene film as heat spreader was decreased by about 12°C and had a more uniform temperature compared to those without graphene heat spreader when driven by a heat flux of about 640W/cm2. Further improvements to the cooling performance of graphene heat spreader could be made by optimizing the synthesis parameters and transfer process of graphene films.