Design and Mathematical Modelling of Inter Spike Interval of Temporal Neuromorphic Encoder for Image Recognition

VS Aadhitiya, Jani Babu Shaik, S. Singhal, Siona Menezes Picardo, Nilesh Goel
{"title":"Design and Mathematical Modelling of Inter Spike Interval of Temporal Neuromorphic Encoder for Image Recognition","authors":"VS Aadhitiya, Jani Babu Shaik, S. Singhal, Siona Menezes Picardo, Nilesh Goel","doi":"10.48550/arXiv.2205.09519","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing systems emulate the electrophysiological behavior of the biological nervous system using mixed-mode analog or digital VLSI circuits. These systems show superior accuracy and power efficiency in carrying out cognitive tasks. The neural network architecture used in neuromorphic computing systems is spiking neural networks (SNNs) analogous to the biological nervous system. SNN operates on spike trains as a function of time. A neuromorphic encoder converts sensory data into spike trains. In this paper, a low-power neuromorphic encoder for image processing is implemented. A mathematical model between pixels of an image and the inter-spike intervals is also formulated. Wherein an exponential relationship between pixels and inter-spike intervals is obtained. Finally, the mathematical equation is validated with circuit simulation. The circuits in our work, are implemented on industry-standard HKMG based 45nm technology.","PeriodicalId":436884,"journal":{"name":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.09519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Neuromorphic computing systems emulate the electrophysiological behavior of the biological nervous system using mixed-mode analog or digital VLSI circuits. These systems show superior accuracy and power efficiency in carrying out cognitive tasks. The neural network architecture used in neuromorphic computing systems is spiking neural networks (SNNs) analogous to the biological nervous system. SNN operates on spike trains as a function of time. A neuromorphic encoder converts sensory data into spike trains. In this paper, a low-power neuromorphic encoder for image processing is implemented. A mathematical model between pixels of an image and the inter-spike intervals is also formulated. Wherein an exponential relationship between pixels and inter-spike intervals is obtained. Finally, the mathematical equation is validated with circuit simulation. The circuits in our work, are implemented on industry-standard HKMG based 45nm technology.
用于图像识别的时间神经形态编码器的尖峰间隔设计与数学建模
神经形态计算系统使用混合模式模拟或数字VLSI电路模拟生物神经系统的电生理行为。这些系统在执行认知任务时显示出卓越的准确性和功率效率。神经形态计算系统中使用的神经网络架构是类似于生物神经系统的尖峰神经网络(SNNs)。SNN作为时间的函数在尖峰列车上运行。神经形态编码器将感觉数据转换成脉冲序列。本文实现了一种用于图像处理的低功耗神经形态编码器。一个数学模型之间的像素的图像和尖峰间的间隔也制定。其中,像素和尖峰间隔之间的指数关系得到。最后,通过电路仿真对数学方程进行了验证。我们工作中的电路是在基于45纳米技术的工业标准HKMG上实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信