Survey: Hardware Trojan Detection for Netlist

Yipei Yang, Jing Ye, Yuan Cao, Jiliang Zhang, Xiaowei Li, Huawei Li, Yu Hu
{"title":"Survey: Hardware Trojan Detection for Netlist","authors":"Yipei Yang, Jing Ye, Yuan Cao, Jiliang Zhang, Xiaowei Li, Huawei Li, Yu Hu","doi":"10.1109/ATS49688.2020.9301614","DOIUrl":null,"url":null,"abstract":"The development of integrated circuit technology is accompanied by potential threats. Malicious modifications to circuits, known as hardware Trojans, are major security concerns. This paper gives a survey of hardware Trojan detection methods towards gate-level netlists. The detection methods are divided into search-based, threshold-based, and machine learning-based ones. This paper compares and analyzes existing works from aspects of feature selection, data balancing techniques, classification criterion, detection range. The experimental results are also selected for comparison.","PeriodicalId":220508,"journal":{"name":"2020 IEEE 29th Asian Test Symposium (ATS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 29th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS49688.2020.9301614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The development of integrated circuit technology is accompanied by potential threats. Malicious modifications to circuits, known as hardware Trojans, are major security concerns. This paper gives a survey of hardware Trojan detection methods towards gate-level netlists. The detection methods are divided into search-based, threshold-based, and machine learning-based ones. This paper compares and analyzes existing works from aspects of feature selection, data balancing techniques, classification criterion, detection range. The experimental results are also selected for comparison.
调查:硬件木马检测的网表
集成电路技术的发展伴随着潜在的威胁。恶意修改电路,被称为硬件木马,是主要的安全问题。本文综述了针对门级网络列表的硬件木马检测方法。检测方法分为基于搜索的、基于阈值的和基于机器学习的。本文从特征选择、数据平衡技术、分类标准、检测范围等方面对已有研究成果进行了比较和分析。并选取实验结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信