{"title":"Temperature Dependence of CMOS Device Reliability","authors":"C. Yao, Joseph Thou, R. Cheung, H. Chan","doi":"10.1109/IRPS.1986.362130","DOIUrl":null,"url":null,"abstract":"This paper presents experimental results on the temperature dependence of CMOS device reliability in topological scaling. The latch-up characteristics as functions of temperature, substrate material, and device geometry are reported based on a twin-tub CMOS technology. The trade-off between the advantage of a higher device transconductance in scaled CMOSFET's and the associated reliability constraints due to the hot-carrier-induced device degradation is studied in a wide temperature range. The n-channel LDD MOSFET lifetime is observed to follow t = (A/Id) (Isub/Id)¿2.7 from room temperature to 77 K, where A is a temperature-dependent coefficient with an activation energy of 39 mev. The temperature dependence of the generation of the oxide charge is described. A correlation between the positive charge generated at high injection level and the oxide breakdown is identified.","PeriodicalId":354436,"journal":{"name":"24th International Reliability Physics Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"24th International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.1986.362130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents experimental results on the temperature dependence of CMOS device reliability in topological scaling. The latch-up characteristics as functions of temperature, substrate material, and device geometry are reported based on a twin-tub CMOS technology. The trade-off between the advantage of a higher device transconductance in scaled CMOSFET's and the associated reliability constraints due to the hot-carrier-induced device degradation is studied in a wide temperature range. The n-channel LDD MOSFET lifetime is observed to follow t = (A/Id) (Isub/Id)¿2.7 from room temperature to 77 K, where A is a temperature-dependent coefficient with an activation energy of 39 mev. The temperature dependence of the generation of the oxide charge is described. A correlation between the positive charge generated at high injection level and the oxide breakdown is identified.