On-chip diagnosis for early-life and wear-out failures

Matthew Beckler, R. D. Blanton
{"title":"On-chip diagnosis for early-life and wear-out failures","authors":"Matthew Beckler, R. D. Blanton","doi":"10.1109/TEST.2012.6401580","DOIUrl":null,"url":null,"abstract":"One approach for achieving integrated-system robustness centers on performing test during runtime, identifying the location of any faults (or potential faults), and repairing or avoiding the affected portion of the system. Fault dictionaries can be used to locate faults but conventional approaches require significant memory storage and are therefore limited to simplistic fault types. To overcome these limitations, three contributions are made that include: (i) enhancement of an unspecified transition fault model (called here the transition-X fault model, or TRAX for short) for capturing the misbehaviors expected from scaled technologies, (ii) development of a new type of hierarchical dictionary that only localizes to the level of repair or fault avoidance, and (iii) the design of a scalable architecture for retrieving and using the hierarchical dictionary for performing on-chip diagnosis. Experiments involving various circuits, including the OpenSPARC T2 processor, demonstrate that early-life and wear-out failures can be accurately diagnosed with minimum overhead using TRAX dictionaries that are up to 2600x smaller than full-response dictionaries.","PeriodicalId":353290,"journal":{"name":"2012 IEEE International Test Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2012.6401580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

One approach for achieving integrated-system robustness centers on performing test during runtime, identifying the location of any faults (or potential faults), and repairing or avoiding the affected portion of the system. Fault dictionaries can be used to locate faults but conventional approaches require significant memory storage and are therefore limited to simplistic fault types. To overcome these limitations, three contributions are made that include: (i) enhancement of an unspecified transition fault model (called here the transition-X fault model, or TRAX for short) for capturing the misbehaviors expected from scaled technologies, (ii) development of a new type of hierarchical dictionary that only localizes to the level of repair or fault avoidance, and (iii) the design of a scalable architecture for retrieving and using the hierarchical dictionary for performing on-chip diagnosis. Experiments involving various circuits, including the OpenSPARC T2 processor, demonstrate that early-life and wear-out failures can be accurately diagnosed with minimum overhead using TRAX dictionaries that are up to 2600x smaller than full-response dictionaries.
芯片上诊断早期寿命和磨损故障
实现集成系统健壮性的一种方法集中在运行时执行测试,识别任何故障(或潜在故障)的位置,以及修复或避免系统的受影响部分。故障字典可用于定位故障,但传统方法需要大量内存存储,因此仅限于简单的故障类型。为了克服这些限制,我们做出了三个贡献,包括:(i)增强未指定的过渡故障模型(这里称为过渡- x故障模型,简称TRAX),用于捕获规模化技术预期的错误行为;(ii)开发一种新型分层字典,仅定位于修复或故障避免级别;(iii)设计一种可扩展的架构,用于检索和使用分层字典执行片上诊断。包括OpenSPARC T2处理器在内的各种电路的实验表明,使用比全响应字典小2600倍的TRAX字典,可以以最小的开销准确诊断早期寿命和磨损故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信