Jacek Rak , Rita Girão-Silva , Teresa Gomes , Georgios Ellinas , Burak Kantarci , Massimo Tornatore
{"title":"Disaster resilience of optical networks: State of the art, challenges, and opportunities","authors":"Jacek Rak , Rita Girão-Silva , Teresa Gomes , Georgios Ellinas , Burak Kantarci , Massimo Tornatore","doi":"10.1016/j.osn.2021.100619","DOIUrl":null,"url":null,"abstract":"<div><p>For several decades, optical networks, due to their high capacity and long-distance transmission range, have been used as the major communication technology to serve network traffic, especially in the core and metro segments of communication networks. Unfortunately, our society has often experienced how the correct functioning of these critical infrastructures can be substantially hindered by massive failures triggered by natural disasters, weather-related disruptions and malicious human activities.</p><p>In this position paper, we discuss the impact on optical networks of all major classes of disaster events mentioned above, and we overview recent relevant techniques that have been proposed to increase the disaster resilience of optical networks against the various classes of disaster events. We start by presenting some proactive methods to be applied before the occurrence of a disaster. Then we move our focus also on other preparedness methods that can be executed in the (typically short) time frame between the occurrence of an early alert of an incoming disaster and the time a disaster actually hits the network. Finally, we discuss reactive procedures that allow performing post-disaster recovery operations effectively. The analysis of disaster resilience mechanisms provided in this paper covers both wired and optical wireless communication infrastructures and also contains explicit remarks covering the role of emerging technologies (e.g., fixed-mobile convergence in the 5G era and beyond) in disaster resilience.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"42 ","pages":"Article 100619"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100619","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427721000163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 16
Abstract
For several decades, optical networks, due to their high capacity and long-distance transmission range, have been used as the major communication technology to serve network traffic, especially in the core and metro segments of communication networks. Unfortunately, our society has often experienced how the correct functioning of these critical infrastructures can be substantially hindered by massive failures triggered by natural disasters, weather-related disruptions and malicious human activities.
In this position paper, we discuss the impact on optical networks of all major classes of disaster events mentioned above, and we overview recent relevant techniques that have been proposed to increase the disaster resilience of optical networks against the various classes of disaster events. We start by presenting some proactive methods to be applied before the occurrence of a disaster. Then we move our focus also on other preparedness methods that can be executed in the (typically short) time frame between the occurrence of an early alert of an incoming disaster and the time a disaster actually hits the network. Finally, we discuss reactive procedures that allow performing post-disaster recovery operations effectively. The analysis of disaster resilience mechanisms provided in this paper covers both wired and optical wireless communication infrastructures and also contains explicit remarks covering the role of emerging technologies (e.g., fixed-mobile convergence in the 5G era and beyond) in disaster resilience.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks