Active multi-camera object recognition in presence of occlusion

Forough Farshidi, S. Sirouspour, T. Kirubarajan
{"title":"Active multi-camera object recognition in presence of occlusion","authors":"Forough Farshidi, S. Sirouspour, T. Kirubarajan","doi":"10.1109/IROS.2005.1545591","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the problem of appearance-based active multi-sensor object recognition/pose estimation in the presence of structured noise. It is assumed that multiple cameras acquire images from an object belonging to a set of known objects. An algorithm is proposed for optimal sequential positioning of the cameras in order to estimate the class and pose of the object from sensory observations. The principle component analysis is used to produce the observation vector from the acquired images. Object occlusion and sensor noise have been explicitly incorporated into the recognition process using a probabilistic approach. A recursive Bayesian state estimation problem is formulated that employs the mutual information in order to determine the best next camera positions based on the available information. Experiments with a two-camera system demonstrate that the proposed method is highly effective in object recognition/pose estimation in the presence of occlusion.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2005.1545591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper is concerned with the problem of appearance-based active multi-sensor object recognition/pose estimation in the presence of structured noise. It is assumed that multiple cameras acquire images from an object belonging to a set of known objects. An algorithm is proposed for optimal sequential positioning of the cameras in order to estimate the class and pose of the object from sensory observations. The principle component analysis is used to produce the observation vector from the acquired images. Object occlusion and sensor noise have been explicitly incorporated into the recognition process using a probabilistic approach. A recursive Bayesian state estimation problem is formulated that employs the mutual information in order to determine the best next camera positions based on the available information. Experiments with a two-camera system demonstrate that the proposed method is highly effective in object recognition/pose estimation in the presence of occlusion.
存在遮挡的主动多摄像头目标识别
本文研究了存在结构化噪声情况下基于外观的主动多传感器目标识别/姿态估计问题。假设多个摄像机从属于一组已知物体的物体上获取图像。提出了一种摄像机序列最优定位算法,通过感官观测估计目标的类别和姿态。利用主成分分析从采集到的图像中产生观测向量。目标遮挡和传感器噪声已明确纳入使用概率方法的识别过程。提出了一个递归贝叶斯状态估计问题,利用互信息根据可用信息确定下一个摄像机的最佳位置。在双相机系统上的实验表明,该方法在遮挡下的目标识别和姿态估计是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信