Machine-Learning-Based Multiple Abstraction-Level Detection of Hardware Trojan Inserted at Register-Transfer Level

Hau Sim Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, Sreedharan Baskara Dass, Chee Hoo Kok, F. Hussin
{"title":"Machine-Learning-Based Multiple Abstraction-Level Detection of Hardware Trojan Inserted at Register-Transfer Level","authors":"Hau Sim Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, Sreedharan Baskara Dass, Chee Hoo Kok, F. Hussin","doi":"10.1109/ATS47505.2019.00018","DOIUrl":null,"url":null,"abstract":"Hardware Trojan refers to a malicious modification of an integrated circuit (IC). To eliminate the complications arising from designing an IC which includes a Trojan, it is suggested to apply Trojan detection as early as at register-transfer level (RTL). In this paper, we propose a hardware Trojan detection framework which consists of both RTL and gate-level classification using machine learning approaches to detect hardware Trojan inserted at RTL. In the experiment, all Trojan benchmarks were successfully identified without false positive detection on non-Trojan benchmark.","PeriodicalId":258824,"journal":{"name":"2019 IEEE 28th Asian Test Symposium (ATS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS47505.2019.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hardware Trojan refers to a malicious modification of an integrated circuit (IC). To eliminate the complications arising from designing an IC which includes a Trojan, it is suggested to apply Trojan detection as early as at register-transfer level (RTL). In this paper, we propose a hardware Trojan detection framework which consists of both RTL and gate-level classification using machine learning approaches to detect hardware Trojan inserted at RTL. In the experiment, all Trojan benchmarks were successfully identified without false positive detection on non-Trojan benchmark.
基于机器学习的多抽象层检测在寄存器传输层插入的硬件木马
硬件木马是指对集成电路进行恶意修改。为了消除设计包含木马的集成电路所引起的复杂性,建议早在寄存器传输级(RTL)应用木马检测。在本文中,我们提出了一个硬件木马检测框架,该框架由RTL和门级分类组成,使用机器学习方法检测在RTL插入的硬件木马。在实验中,所有木马基准测试都被成功识别,而非木马基准测试没有出现误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信