Fully-Coupled Transient Modeling of Highly Miniaturized Electrostatic Pull-In Driven Micropumps

Wolfgang Hölzl, M. Seidl, G. Schrag
{"title":"Fully-Coupled Transient Modeling of Highly Miniaturized Electrostatic Pull-In Driven Micropumps","authors":"Wolfgang Hölzl, M. Seidl, G. Schrag","doi":"10.1109/EuroSimE56861.2023.10100814","DOIUrl":null,"url":null,"abstract":"We present a problem-adapted finite element model, which enables the design of a novel type of a MEMS membrane pump as well as the investigation and the optimization of its operation, which heavily relies on the electrostatic pull-in of a radial membrane. The electro-mechanical actuation scheme constitutes a strongly coupled problem, which causes convergence problems due to the singular behavior of the electrostatic loads at small distances, as well as the highly non-linear mechanical contact. We overcome these issues by introducing problem-adapted regularization functions. These drastically improve the convergence behavior and the computation time, while at the same time causing only very small approximation errors. The resulting simulation model allows to gain a better understanding of the device operation, in particular to identify a failure condition of previously manufactured prototypes, where fluid is trapped in the pump chamber. Furthermore, it allows to quickly assess a design optimization that prevents this trapping and improves the overall device operation.","PeriodicalId":425592,"journal":{"name":"2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuroSimE56861.2023.10100814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a problem-adapted finite element model, which enables the design of a novel type of a MEMS membrane pump as well as the investigation and the optimization of its operation, which heavily relies on the electrostatic pull-in of a radial membrane. The electro-mechanical actuation scheme constitutes a strongly coupled problem, which causes convergence problems due to the singular behavior of the electrostatic loads at small distances, as well as the highly non-linear mechanical contact. We overcome these issues by introducing problem-adapted regularization functions. These drastically improve the convergence behavior and the computation time, while at the same time causing only very small approximation errors. The resulting simulation model allows to gain a better understanding of the device operation, in particular to identify a failure condition of previously manufactured prototypes, where fluid is trapped in the pump chamber. Furthermore, it allows to quickly assess a design optimization that prevents this trapping and improves the overall device operation.
高度小型化静电拉入驱动微泵的全耦合瞬态建模
我们提出了一个问题适应的有限元模型,该模型使新型MEMS膜泵的设计以及对其运行的研究和优化成为可能,这在很大程度上依赖于径向膜的静电拉入。机电驱动方案是一个强耦合问题,由于静电载荷在小距离处的奇异行为以及机械接触的高度非线性,导致了收敛问题。我们通过引入自适应问题的正则化函数来克服这些问题。这极大地改善了收敛性和计算时间,同时只引起非常小的近似误差。由此产生的仿真模型可以更好地了解设备的运行情况,特别是识别先前制造的原型的故障情况,其中流体被困在泵腔中。此外,它允许快速评估设计优化,以防止这种捕获并改善整体设备操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信