A novel tactile sensor based on structured light

Yuanlong Yu, Hongxiang Xue, Zhenzhen Liang
{"title":"A novel tactile sensor based on structured light","authors":"Yuanlong Yu, Hongxiang Xue, Zhenzhen Liang","doi":"10.1109/ROBIO49542.2019.8961786","DOIUrl":null,"url":null,"abstract":"In this paper, we have developed a tactile sensor based on the working principle of structured light. It solves the problem that structured light systems are highly susceptible to ambient light and require frequent calibration. And the structural light principle is applied to the robot operation process, that the robot can acquire the three-dimensional structure information of the object during the operation process, without worrying that the robot will block the camera and affect the reconstruction effect during the robot operation. The main components of the tactile sensor are two cameras, a transparent elastomer, and an adhesion layer pattern. In the experiment, we used the sensor to reconstruct a roman column model in three dimensions, in which the adhesion layer pattern is a structured light pattern coded by the spatial coding method. The results show that the tactile sensor developed in this paper can be used for three-dimensional reconstruction of contact objects with good results. The 3D reconstruction accuracy of the sensor designed in this paper is 0.4mm.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have developed a tactile sensor based on the working principle of structured light. It solves the problem that structured light systems are highly susceptible to ambient light and require frequent calibration. And the structural light principle is applied to the robot operation process, that the robot can acquire the three-dimensional structure information of the object during the operation process, without worrying that the robot will block the camera and affect the reconstruction effect during the robot operation. The main components of the tactile sensor are two cameras, a transparent elastomer, and an adhesion layer pattern. In the experiment, we used the sensor to reconstruct a roman column model in three dimensions, in which the adhesion layer pattern is a structured light pattern coded by the spatial coding method. The results show that the tactile sensor developed in this paper can be used for three-dimensional reconstruction of contact objects with good results. The 3D reconstruction accuracy of the sensor designed in this paper is 0.4mm.
一种基于结构光的新型触觉传感器
本文研制了一种基于结构光工作原理的触觉传感器。它解决了结构光系统对环境光高度敏感和需要频繁校准的问题。并将结构光原理应用到机器人操作过程中,使机器人在操作过程中能够获取物体的三维结构信息,而不用担心机器人在操作过程中会遮挡摄像头,影响重建效果。触觉传感器的主要组成部分是两个摄像头、一个透明弹性体和一个粘附层图案。在实验中,我们利用传感器在三维空间重构了一个罗马柱模型,其中附着层图案是一个用空间编码方法编码的结构光图案。结果表明,所研制的触觉传感器可用于接触物体的三维重建,效果良好。本文设计的传感器三维重建精度为0.4mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信