DVFS Binning Using Machine-Learning Techniques

Keng-Wei Chang, Chun-Yang Huang, Szu-Pang Mu, Jian-Min Huang, Shi-Hao Chen, M. Chao
{"title":"DVFS Binning Using Machine-Learning Techniques","authors":"Keng-Wei Chang, Chun-Yang Huang, Szu-Pang Mu, Jian-Min Huang, Shi-Hao Chen, M. Chao","doi":"10.1109/ITC-ASIA.2018.00016","DOIUrl":null,"url":null,"abstract":"This paper presents a framework which can avoid the lengthy system test by utilizing machine-learning techniques to classify parts into different DVFS bins based on the results collected at CP and FT test only. The core machine-learning techniques in use are Bayesian linear regression for model fitting and stepwise regression for feature selection. Another method, called the incremental F_max-model search, is also presented to reduce the test time of collecting the required data for each training sample. The experiments are conducted based on 249 test chips of an industrial SoC. The experimental results demonstrate that our proposed framework can achieve a high accuracy ratio of placing a part into correct DVFS bin without placing any slower part into a faster DVFS bin. The experimental results also demonstrate that the incremental F_max-model search can save 45.1% and 52.6% of applications of the system-level test compared to the conventional median linear search and binary search, respectively.","PeriodicalId":129553,"journal":{"name":"2018 IEEE International Test Conference in Asia (ITC-Asia)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Test Conference in Asia (ITC-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-ASIA.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a framework which can avoid the lengthy system test by utilizing machine-learning techniques to classify parts into different DVFS bins based on the results collected at CP and FT test only. The core machine-learning techniques in use are Bayesian linear regression for model fitting and stepwise regression for feature selection. Another method, called the incremental F_max-model search, is also presented to reduce the test time of collecting the required data for each training sample. The experiments are conducted based on 249 test chips of an industrial SoC. The experimental results demonstrate that our proposed framework can achieve a high accuracy ratio of placing a part into correct DVFS bin without placing any slower part into a faster DVFS bin. The experimental results also demonstrate that the incremental F_max-model search can save 45.1% and 52.6% of applications of the system-level test compared to the conventional median linear search and binary search, respectively.
使用机器学习技术的DVFS分类
本文提出了一个框架,该框架通过利用机器学习技术,仅根据CP和FT测试收集的结果将部件分类到不同的DVFS箱中,从而避免了冗长的系统测试。使用的核心机器学习技术是用于模型拟合的贝叶斯线性回归和用于特征选择的逐步回归。为了减少每个训练样本收集所需数据的测试时间,还提出了另一种称为增量f_max模型搜索的方法。实验是基于工业SoC的249个测试芯片进行的。实验结果表明,我们提出的框架可以在不将任何较慢的零件放入较快的DVFS容器的情况下,实现将零件放入正确的DVFS容器的高精度。实验结果还表明,与传统的中位数线性搜索和二分搜索相比,增量式f_max模型搜索可分别节省45.1%和52.6%的系统级测试应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信