Inverse Neural MIMO NARX Model Identification of Nonlinear System Optimized with PSO

H. Anh, N. Phuc
{"title":"Inverse Neural MIMO NARX Model Identification of Nonlinear System Optimized with PSO","authors":"H. Anh, N. Phuc","doi":"10.1109/DELTA.2010.61","DOIUrl":null,"url":null,"abstract":"In this paper, a neural Inverse Dynamic MIMO NARX (Neural IDMN) model is applied for modelling and identifying simultaneously both of joints of the prototype 2- axes PAM robot arm. The contact force variations and highly nonlinear coupling features of both links of the 2-axes PAM system are modelled thoroughly through an Inverse Neural MIMO NARX Model-based identification process using experiment input-output training data. For the first time, the parameters of dynamic Inverse neural MIMO NARX Model of the 2-axes PAM robot arm has been identified and optimized with Particle Swarm optimisation (PSO) algorithm. The results show that the neural IDMN Model trained by PSO algorithm yields outstanding performance and perfect accuracy.","PeriodicalId":421336,"journal":{"name":"2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DELTA.2010.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a neural Inverse Dynamic MIMO NARX (Neural IDMN) model is applied for modelling and identifying simultaneously both of joints of the prototype 2- axes PAM robot arm. The contact force variations and highly nonlinear coupling features of both links of the 2-axes PAM system are modelled thoroughly through an Inverse Neural MIMO NARX Model-based identification process using experiment input-output training data. For the first time, the parameters of dynamic Inverse neural MIMO NARX Model of the 2-axes PAM robot arm has been identified and optimized with Particle Swarm optimisation (PSO) algorithm. The results show that the neural IDMN Model trained by PSO algorithm yields outstanding performance and perfect accuracy.
PSO优化非线性系统的逆神经MIMO NARX模型辨识
本文采用神经逆动态MIMO NARX (neural IDMN)模型对原型2轴PAM机械臂的两个关节进行建模和同时辨识。利用实验输入输出训练数据,通过基于逆神经MIMO NARX模型的辨识过程,对两轴PAM系统各环节的接触力变化和高度非线性耦合特性进行了全面建模。首次采用粒子群算法对2轴PAM机械臂的动态逆神经MIMO NARX模型参数进行了辨识和优化。结果表明,采用粒子群算法训练的神经IDMN模型具有优异的性能和较好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信