K. Yoshikawa, N. Arai, S. Mori, Y. Kaneko, Y. Ohshima, K. Narita, H. Araki
{"title":"A new MOSFETs degradation induced by gate current in off-state condition","authors":"K. Yoshikawa, N. Arai, S. Mori, Y. Kaneko, Y. Ohshima, K. Narita, H. Araki","doi":"10.1109/VLSIT.1990.111014","DOIUrl":null,"url":null,"abstract":"A PMOSFET degradation phenomenon induced by gate current in the off-state condition was studied experimentally for single-drain and lightly-doped-drain (LDD) structures. It is found that scaling down the gate length causes the gate bias condition where the fastest degradation is observed to shift from a condition of maximum gate current to one of zero gate voltage. This indicates a new constraint for scaling PMOSFETs. The hot-electron induced punchthrough (HEIP) effect has been considered one of the serious constraints for utilizing the single-drain structure, as well as for high-voltage applications. Effective channel length can be reduced significantly by HEIP effects in the on-state condition, but once the off-state drain leakage current increases, the off-state stress becomes more severe than the on-state HEIP effect","PeriodicalId":441541,"journal":{"name":"Digest of Technical Papers.1990 Symposium on VLSI Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers.1990 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.1990.111014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A PMOSFET degradation phenomenon induced by gate current in the off-state condition was studied experimentally for single-drain and lightly-doped-drain (LDD) structures. It is found that scaling down the gate length causes the gate bias condition where the fastest degradation is observed to shift from a condition of maximum gate current to one of zero gate voltage. This indicates a new constraint for scaling PMOSFETs. The hot-electron induced punchthrough (HEIP) effect has been considered one of the serious constraints for utilizing the single-drain structure, as well as for high-voltage applications. Effective channel length can be reduced significantly by HEIP effects in the on-state condition, but once the off-state drain leakage current increases, the off-state stress becomes more severe than the on-state HEIP effect