N. Banerjee, Y. Xie, M. M. Rahman, H. Kim, C. Mastrangelo
{"title":"From chips to dust: The MEMS shatter secure chip","authors":"N. Banerjee, Y. Xie, M. M. Rahman, H. Kim, C. Mastrangelo","doi":"10.1109/MEMSYS.2014.6765843","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation of a transience mechanism for silicon microchips via low-temperature postprocessing steps that transform almost any electronic, optical or MEMS substrate chips into transient ones. Transience is achieved without any hazardous or explosive materials. Triggered chip transience is achieved by the incorporation of a distributed, thermally-activated expanding material on the chip backside. When heated at 160°C the expanding material produces massive chip cleavage mechanically shattering the chip into a heap of silicon dust.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This paper presents the implementation of a transience mechanism for silicon microchips via low-temperature postprocessing steps that transform almost any electronic, optical or MEMS substrate chips into transient ones. Transience is achieved without any hazardous or explosive materials. Triggered chip transience is achieved by the incorporation of a distributed, thermally-activated expanding material on the chip backside. When heated at 160°C the expanding material produces massive chip cleavage mechanically shattering the chip into a heap of silicon dust.