Advanced 3D Localization in Lock-in Thermography Based on the Analysis of the TRTR (Time-Resolved Thermal Response) Received Upon Arbitrary Waveform Stimulation
S. Brand, M. Kögel, C. Große, F. Altmann, B. Lai, Qingqing Wang, James Vickers, D. Tien, Bernice Zee, Qiu Wen
{"title":"Advanced 3D Localization in Lock-in Thermography Based on the Analysis of the TRTR (Time-Resolved Thermal Response) Received Upon Arbitrary Waveform Stimulation","authors":"S. Brand, M. Kögel, C. Große, F. Altmann, B. Lai, Qingqing Wang, James Vickers, D. Tien, Bernice Zee, Qiu Wen","doi":"10.31399/asm.cp.istfa2019p0001","DOIUrl":null,"url":null,"abstract":"\n Lock-in thermography (LIT) has been successfully applied in different excitation and analysis modes including classical LIT, analysis of the time-resolved temperature response (TRTR) upon square wave excitation and TRTR analysis in combination with arbitrary waveform stimulation. The results obtained by both classical square wave- and arbitrary waveform stimulation showed excellent agreement. Phase and amplitudes values extracted by classical LIT analysis and by Fourier analysis of the time resolved temperature response also coincided, as expected from the underlying system theory. In addition to a conceptual test vehicle represented by a point-shaped thermal source, two semiconductor packages with actual defects were studied and the obtained results are presented herein. The benefit of multi-parametric imaging for identification of a defect’s lateral position in the presence of multiple hot spots was also demonstrated. For axial localization, the phase shift values have been extracted as a function of frequency [4]. For comparative validation, LIT analyses were conducted in both square wave and arbitrary waveform excitation using custom designed and sample-specific stimulation signals. In both cases result verification was performed employing X-ray, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) as complementary techniques.","PeriodicalId":259671,"journal":{"name":"ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2019p0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Lock-in thermography (LIT) has been successfully applied in different excitation and analysis modes including classical LIT, analysis of the time-resolved temperature response (TRTR) upon square wave excitation and TRTR analysis in combination with arbitrary waveform stimulation. The results obtained by both classical square wave- and arbitrary waveform stimulation showed excellent agreement. Phase and amplitudes values extracted by classical LIT analysis and by Fourier analysis of the time resolved temperature response also coincided, as expected from the underlying system theory. In addition to a conceptual test vehicle represented by a point-shaped thermal source, two semiconductor packages with actual defects were studied and the obtained results are presented herein. The benefit of multi-parametric imaging for identification of a defect’s lateral position in the presence of multiple hot spots was also demonstrated. For axial localization, the phase shift values have been extracted as a function of frequency [4]. For comparative validation, LIT analyses were conducted in both square wave and arbitrary waveform excitation using custom designed and sample-specific stimulation signals. In both cases result verification was performed employing X-ray, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) as complementary techniques.